Advertisements
Advertisements
प्रश्न
Integrate the function in x tan-1 x.
उत्तर
Let `I = int x tan^-1 x dx`
`= tan^-1 x int x dx - int [(d/dx(tan^-1 x)) int (x dx)] dx`
`= tan^-1 x (x^2/2) - int 1/ (1 + x^2) * x^2/2 dx`
`= x^2/2 tan^-1 x - 1/2 int x^2/ (x^2 + 1) dx`
`= x^2/2 tan^-1 x - 1/2 int (x^2 + 1 - 1)/ (1 + x^2) dx`
`= x^2/2 tan^-1 x - 1/2 int (1 - 1/(1 + x^2)) dx`
`= x^2/2 tan^-1 x - 1/2 (x - tan^-1 x) + C`
`= x^2/2 tan^-1 x - 1/2 x + 1/2 tan^-1 x + C`
APPEARS IN
संबंधित प्रश्न
Prove that:
`int sqrt(a^2 - x^2) dx = x/2 sqrt(a^2 - x^2) + a^2/2sin^-1(x/a)+c`
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Integrate the function in x2 log x.
Integrate the function in x cos-1 x.
Integrate the function in x (log x)2.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
`int e^x sec x (1 + tan x) dx` equals:
Find :
`∫(log x)^2 dx`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : `(x + 1) sqrt(2x^2 + 3)`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Integrate the following w.r.t.x : `log (1 + cosx) - xtan(x/2)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
`int "x"^2 "e"^"3x"`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" [(log "x")^2 + (2 log "x")/"x"]` dx
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int ("ae"^("x") + "be"^(-"x"))/("ae"^("x") - "be"^(−"x"))` dx
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
State whether the following statement is True or False:
If `int((x - 1)"d"x)/((x + 1)(x - 2))` = A log|x + 1| + B log|x – 2|, then A + B = 1
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int_0^pi x log sin x "d"x`
The integral `int x cos^-1 ((1 - x^2)/(1 + x^2))dx (x > 0)` is equal to ______.
Find `int e^x ((1 - sinx)/(1 - cosx))dx`.
`int(3x^2)/sqrt(1+x^3) dx = sqrt(1+x^3)+c`
Evaluate:
`intcos^-1(sqrt(x))dx`
Evaluate `int tan^-1x dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate `int(1 + x + x^2/(2!))dx`.