Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
उत्तर
Let I = `int xsqrt(5 - 4x - x^2).dx`
Let x = `"A"[d/dx(5 - 4x - x^2)] + "B"`
= A [– 4 – 2x] + B
= –2Ax + (B – 4A)
Comparing the coefficients of x and the constant term on both the sides, we get
–2A = 1, B – 4A = 0
∴ A = `-(1)/(2), "B" = 4"A" = 4(-1/2)` = – 2
∴ x = `-(1)/(2)(- 4 - 2x) - 2`
∴ I = `int [ -1/2 (- 4 - 2x) - 2]sqrt(5 - 4x - x^2).dx`
= `-(1)/(2) int (- 4 - 2x) sqrt(5 - 4x - x^2).dx - 2 int sqrt(5 - 4x - x^2).dx`
= I1 - I2
In I1, put 5 - 4x - x2 = t
∴ (– 4 – 2x).dx = dt
∴ I1 = `(1)/(2)int t^(1/2).dt `
= `-(1)/(2)(t^(3/2)/(3/2)) + c_1`
= `-(1)/(3)(5 - 4x - x^2)^(3/2) + c_1`
I2 = `2 int sqrt(5 - 4x - x^2).dx`
= `2 int sqrt(5 - (x^2 + 4x)).dx`
= `2 int sqrt(9 - (x^2 + 4x + 4)).dx`
= `2 int sqrt(3^2 - (x + 2)^2).dx`
= `2[((x + 2)/2) sqrt(3^2 - (x + 2)^2) + 3^2/(2)sin^-1 ((x + 2)/3)] + c_2`
= `(x + 2)sqrt(5 - 4x - x^2) + 9sin^-1 ((x + 2)/3) + c_2`
∴ I = `-(1)/(3)(5 - 4x - x^2)^(3/2) - (x + 2) sqrt(5 - 4x - x^2) - 9sin^-1 ((x + 2)/3) + c`, where c = c1 + c2 .
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x sin-1 x.
Integrate the function in x cos-1 x.
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Integrate the function in (x2 + 1) log x.
Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.
`int e^x sec x (1 + tan x) dx` equals:
Prove that:
`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int x^3.logx.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
Evaluate the following : `int cos sqrt(x).dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following:
`int x.sin 2x. cos 5x.dx`
Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`
Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]ex
Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following with respect to the respective variable : cos 3x cos 2x cos x
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Evaluate the following.
`int "x"^2 "e"^"4x"`dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int(x + 1/x)^3 dx` = ______.
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate `int 1/(x(x - 1)) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
Evaluate the following:
`int_0^pi x log sin x "d"x`
State whether the following statement is true or false.
If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.
`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`
Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`
Find: `int e^x.sin2xdx`
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.
`int 1/sqrt(x^2 - a^2)dx` = ______.
`int(logx)^2dx` equals ______.
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(xe^x)/((1+x)^2) dx` = ______
Solve the following
`int_0^1 e^(x^2) x^3 dx`
Evaluate:
`int e^(ax)*cos(bx + c)dx`
Evaluate:
`inte^x sinx dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following:
`intx^3e^(x^2)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1+x^4)`dx