मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Integrate the following functions w.r.t. x : x5-4x-x2 - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`

बेरीज

उत्तर

Let I = `int xsqrt(5 - 4x - x^2).dx`

Let x = `"A"[d/dx(5 - 4x - x^2)] + "B"`

= A [– 4 – 2x] + B
= –2Ax + (B – 4A)
Comparing the coefficients of x and the constant term on both the sides, we get
–2A = 1, B – 4A = 0

∴  A = `-(1)/(2), "B" = 4"A" = 4(-1/2)` = – 2

∴ x = `-(1)/(2)(- 4 - 2x) - 2`

∴ I = `int [ -1/2 (- 4 - 2x) - 2]sqrt(5 - 4x - x^2).dx`

= `-(1)/(2) int (- 4 - 2x) sqrt(5 - 4x - x^2).dx - 2 int sqrt(5 - 4x - x^2).dx`

= I1 - I2
In I1, put 5 - 4x - x2 = t
∴ (– 4 – 2x).dx = dt

∴ I1 = `(1)/(2)int t^(1/2).dt `

= `-(1)/(2)(t^(3/2)/(3/2)) + c_1`

= `-(1)/(3)(5 - 4x - x^2)^(3/2) + c_1`

I2 = `2 int sqrt(5 - 4x - x^2).dx`

= `2 int sqrt(5 - (x^2 + 4x)).dx`

= `2 int sqrt(9 - (x^2 + 4x + 4)).dx`

= `2 int sqrt(3^2 - (x + 2)^2).dx`

= `2[((x + 2)/2) sqrt(3^2 - (x + 2)^2) + 3^2/(2)sin^-1 ((x + 2)/3)] + c_2`

= `(x + 2)sqrt(5 - 4x - x^2) + 9sin^-1 ((x + 2)/3) + c_2`

∴ I = `-(1)/(3)(5 - 4x - x^2)^(3/2) - (x + 2) sqrt(5 - 4x - x^2) - 9sin^-1 ((x + 2)/3) + c`, where c = c1 + c2 .

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३८]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 2.09 | पृष्ठ १३८

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin x.


Integrate the function in x log x.


Integrate the function in x sin-1 x.


Integrate the function in x cos-1 x.


Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.


Integrate the function in (x2 + 1) log x.


Integrate the function in `sin^(-1) ((2x)/(1+x^2))`.


`int e^x sec x (1 +   tan x) dx` equals:


Prove that:

`int sqrt(x^2 + a^2)dx = x/2 sqrt(x^2 + a^2) + a^2/2 log |x + sqrt(x^2 + a^2)| + c`


Find : 

`∫(log x)^2 dx`


Evaluate the following : `int x^2.log x.dx`


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following : `int x^3.logx.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`


Evaluate the following : `int cos sqrt(x).dx`


Evaluate the following : `int x.cos^3x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Evaluate the following:

`int x.sin 2x. cos 5x.dx`


Integrate the following functions w.r.t. x : `sqrt((x - 3)(7 - x)`


Integrate the following functions w.r.t. x : [2 + cot x – cosec2x]e 


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following with respect to the respective variable : cos 3x cos 2x cos x


Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Evaluate the following.

`int "x"^2 "e"^"4x"`dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx


`int 1/sqrt(2x^2 - 5)  "d"x`


`int(x + 1/x)^3 dx` = ______.


`int 1/(x^2 - "a"^2)  "d"x` = ______ + c


Evaluate `int 1/(x(x - 1))  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


Evaluate the following:

`int_0^pi x log sin x "d"x`


State whether the following statement is true or false.

If `int (4e^x - 25)/(2e^x - 5)` dx = Ax – 3 log |2ex – 5| + c, where c is the constant of integration, then A = 5.


`int x/((x + 2)(x + 3)) dx` = ______ + `int 3/(x + 3) dx`


Evaluate: `int_0^(pi/4) (dx)/(1 + tanx)`


Find: `int e^x.sin2xdx`


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


Find the general solution of the differential equation: `e^((dy)/(dx)) = x^2`.


`int 1/sqrt(x^2 - a^2)dx` = ______.


`int(logx)^2dx` equals ______.


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(xe^x)/((1+x)^2)  dx` = ______


Solve the following

`int_0^1 e^(x^2) x^3 dx`


Evaluate:

`int e^(ax)*cos(bx + c)dx`


Evaluate:

`inte^x sinx  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv  dx - int(d/dx u)(intv  dx)dx`. Hence evaluate: `intx cos x  dx`


Evaluate:

`int1/(x^2 + 25)dx`


Evaluate the following:

`intx^3e^(x^2)dx` 


Evaluate the following.

`intx^3e^(x^2) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`intx^3/sqrt(1+x^4)`dx


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×