Advertisements
Advertisements
प्रश्न
Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
उत्तर
Let I = `int (t.sin^-1 t)/sqrt(1 - t^2).dt`
= `int t.sin^-1 t. 1/sqrt(1 - t^2).dt`
Put sin–1 t = θ
∴ `1/sqrt(1 - t^2).dt` = dθ
and
t = sin θ
∴ I = `int (sinθ).θdθ`
= `int θ sin θ dθ`
= `θ int sin θ dθ - int [d/(dθ) (θ) int sin θ dθ]dθ`
= `θ (- cos θ) - int 1. (- cosθ)dθ`
= `- θ cosθ + int cosθ dθ`
= – θ cos θ + sin θ + c
= `- θ.sqrt(1 - sin^2θ) + sin θ + c`
= `- sin^-1 t.sqrt(1 - t^2) + t + c`
= `- sqrt(1 - t^2).sin^-1 t + t + c`.
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
Integrate the function in x sin x.
Integrate the function in x log x.
Integrate the function in x log 2x.
Integrate the function in x tan-1 x.
Integrate the function in x cos-1 x.
`int e^x sec x (1 + tan x) dx` equals:
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following: `int x.sin^-1 x.dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int log(logx)/x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Choose the correct options from the given alternatives :
`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =
Choose the correct options from the given alternatives :
`int tan(sin^-1 x)*dx` =
If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (log x)+(log x)–2
Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`
Integrate the following w.r.t.x : sec4x cosec2x
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "e"^"x" (1/"x" - 1/"x"^2)`dx
Evaluate the following.
`int "e"^"x" "x - 1"/("x + 1")^3` dx
Evaluate the following.
`int [1/(log "x") - 1/(log "x")^2]` dx
`int ("x" + 1/"x")^3 "dx"` = ______
Choose the correct alternative from the following.
`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` =
Choose the correct alternative from the following.
`int (1 - "x")^(-2) "dx"` =
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`
Evaluate: `int "dx"/(5 - 16"x"^2)`
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
`int (sinx)/(1 + sin x) "d"x`
`int"e"^(4x - 3) "d"x` = ______ + c
Evaluate `int 1/(x log x) "d"x`
`int 1/sqrt(x^2 - 8x - 20) "d"x`
`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?
∫ log x · (log x + 2) dx = ?
`int log x * [log ("e"x)]^-2` dx = ?
`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.
Find `int_0^1 x(tan^-1x) "d"x`
Evaluate the following:
`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`
`int tan^-1 sqrt(x) "d"x` is equal to ______.
The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1) dx` is
Solve: `int sqrt(4x^2 + 5)dx`
`int(logx)^2dx` equals ______.
`int_0^1 x tan^-1 x dx` = ______.
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`intsqrt(1+x) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
`int logx dx = x(1+logx)+c`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4))dx`
Evaluate:
`inte^x sinx dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Evaluate `int tan^-1x dx`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int x^2 cos x dx`
The value of `inta^x.e^x dx` equals
Evaluate `int(1 + x + x^2/(2!))dx`.