मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫t.sin-1t1-t2.dt - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (t.sin^-1 t)/sqrt(1 - t^2).dt`

बेरीज

उत्तर

Let I = `int (t.sin^-1 t)/sqrt(1 - t^2).dt`

= `int t.sin^-1 t. 1/sqrt(1 - t^2).dt`

Put sin–1 t = θ

∴ `1/sqrt(1 - t^2).dt` = dθ
and
t = sin θ
∴ I = `int (sinθ).θdθ`

= `int θ sin θ dθ`

= `θ int sin θ dθ - int [d/(dθ) (θ) int sin θ dθ]dθ`

= `θ (- cos θ) - int 1. (- cosθ)dθ`

= `- θ cosθ + int cosθ  dθ`

= – θ cos θ + sin θ + c

= `- θ.sqrt(1 - sin^2θ) + sin θ + c`

= `- sin^-1 t.sqrt(1 - t^2) + t + c`

= `- sqrt(1 - t^2).sin^-1 t + t + c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.3 [पृष्ठ १३७]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.3 | Q 1.14 | पृष्ठ १३७

व्हिडिओ ट्यूटोरियलVIEW ALL [1]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


Integrate the function in x sin x.


Integrate the function in x log x.


Integrate the function in x log 2x.


Integrate the function in x tan-1 x.


Integrate the function in x cos-1 x.


`int e^x sec x (1 +   tan x) dx` equals:


Evaluate the following : `int x^3.tan^-1x.dx`


Evaluate the following : `int x.sin^2x.dx`


Evaluate the following: `int x.sin^-1 x.dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int log(logx)/x.dx`


Integrate the following functions w.r.t. x : `e^(2x).sin3x`


Integrate the following functions w.r.t. x:

sin (log x)


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`


Integrate the following functions w.r.t. x : `log(1 + x)^((1 + x)`


Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)] 


Choose the correct options from the given alternatives :

`int (1)/(x + x^5)*dx` = f(x) + c, then `int x^4/(x + x^5)*dx` =


Choose the correct options from the given alternatives :

`int tan(sin^-1 x)*dx` =


If f(x) = `sin^-1x/sqrt(1 - x^2), "g"(x) = e^(sin^-1x)`, then `int f(x)*"g"(x)*dx` = ______.


Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : log (log x)+(log x)–2 


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Integrate the following w.r.t.x : sec4x cosec2x


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "e"^"x" (1/"x" - 1/"x"^2)`dx


Evaluate the following.

`int "e"^"x" "x - 1"/("x + 1")^3` dx


Evaluate the following.

`int [1/(log "x") - 1/(log "x")^2]` dx


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("e"^"2x" + "e"^"-2x")/"e"^"x") "dx"` = 


Choose the correct alternative from the following.

`int (1 - "x")^(-2) "dx"` = 


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: `int "dx"/("x"[(log "x")^2 + 4 log "x" - 1])`


Evaluate: `int "dx"/(5 - 16"x"^2)`


Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`


`int (sinx)/(1 + sin x)  "d"x`


`int"e"^(4x - 3) "d"x` = ______ + c


Evaluate `int 1/(x log x)  "d"x`


`int 1/sqrt(x^2 - 8x - 20)  "d"x`


`int [(log x - 1)/(1 + (log x)^2)]^2`dx = ?


∫ log x · (log x + 2) dx = ?


`int log x * [log ("e"x)]^-2` dx = ?


`int "e"^x [x (log x)^2 + 2 log x] "dx"` = ______.


Find `int_0^1 x(tan^-1x)  "d"x`


Evaluate the following:

`int ((cos 5x + cos 4x))/(1 - 2 cos 3x) "d"x`


`int tan^-1 sqrt(x)  "d"x` is equal to ______.


The value of `int_(- pi/2)^(pi/2) (x^3 + x cos x + tan^5x + 1)  dx` is


Solve: `int sqrt(4x^2 + 5)dx`


`int(logx)^2dx` equals ______.


`int_0^1 x tan^-1 x  dx` = ______.


`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.


`intsqrt(1+x)  dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


`int logx  dx = x(1+logx)+c`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4))dx`


Evaluate:

`inte^x sinx  dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Evaluate `int tan^-1x  dx`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate:

`int x^2 cos x  dx`


The value of `inta^x.e^x dx` equals


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×