Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/(25"x" - "x"(log "x")^2)`
उत्तर
Let I = `int "dx"/(25"x" - "x"(log "x")^2)`
`= int 1/("x"[25 - (log "x")^2])` dx
Put log x = t
∴ `1/"x"` dx = dt
∴ I = `int "dt"/(25 - "t"^2)`
`= int 1/((5)^2 - "t"^2)` dt
`= 1/(2(5)) * log |(5 + "t")/(5 - "t")|` + c
∴ I = `1/10 log |(5 + log "x")/(5 - log "x")|` + c
APPEARS IN
संबंधित प्रश्न
If u and v are two functions of x then prove that
`intuvdx=uintvdx-int[du/dxintvdx]dx`
Hence evaluate, `int xe^xdx`
Evaluate `int_0^(pi)e^2x.sin(pi/4+x)dx`
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x.sin^2x.dx`
Evaluate the following : `int log(logx)/x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Integrate the following functions w.r.t. x : `e^(2x).sin3x`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Integrate the following functions w.r.t. x : `((1 + sin x)/(1 + cos x)).e^x`
Integrate the following functions w.r.t. x : `e^(sin^-1x)*[(x + sqrt(1 - x^2))/sqrt(1 - x^2)]`
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
`int sin4x cos3x "d"x`
Choose the correct alternative:
`int ("d"x)/((x - 8)(x + 7))` =
`int "e"^x int [(2 - sin 2x)/(1 - cos 2x)]`dx = ______.
`int 1/sqrt(x^2 - a^2)dx` = ______.
If `int(2e^(5x) + e^(4x) - 4e^(3x) + 4e^(2x) + 2e^x)/((e^(2x) + 4)(e^(2x) - 1)^2)dx = tan^-1(e^x/a) - 1/(b(e^(2x) - 1)) + C`, where C is constant of integration, then value of a + b is equal to ______.
Evaluate:
`int (sin(x - a))/(sin(x + a))dx`
If u and v are two differentiable functions of x, then prove that `intu*v*dx = u*intv dx - int(d/dx u)(intv dx)dx`. Hence evaluate: `intx cos x dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int(1 + x + x^2/(2!))dx`.