Advertisements
Advertisements
प्रश्न
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
उत्तर
Let I = `int "dx"/(3 - 2"x" - "x"^2)`
3 - 2x - x2 = - x2 - 2x + 3
= -(x2 + 2x - 3)
= - (x2 + 2x + 1 - 4)
= - [(x + 1)2 - 4]
= (2)2 - (x + 1)2
∴ I = `int "dx"/((2)^2 - ("x + 1")^2)`
`= 1/(2(2)) log |(2 + "x" + 1)/(2 - ("x + 1"))|` + c
∴ I = `1/4 log |(3 + "x")/(1 - "x")|` + c
APPEARS IN
संबंधित प्रश्न
Integrate the function in `(x cos^(-1) x)/sqrt(1-x^2)`.
Evaluate the following : `int x^2.log x.dx`
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x:
sin (log x)
Integrate the following functions w.r.t. x : `sec^2x.sqrt(tan^2x + tan x - 7)`
Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : `(1)/(xsin^2(logx)`
`int ("x" + 1/"x")^3 "dx"` = ______
Evaluate: `int "e"^"x"/(4"e"^"2x" -1)` dx
Evaluate: ∫ (log x)2 dx
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
`int((4e^x - 25)/(2e^x - 5))dx = Ax + B log(2e^x - 5) + c`, then ______.
`int(1-x)^-2 dx` = ______
The integrating factor of `ylogy.dx/dy+x-logy=0` is ______.
Evaluate `int (1 + x + x^2/(2!))dx`
Evaluate the following.
`int x^3 e^(x^2) dx`