Advertisements
Advertisements
Question
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Solution
Let I = `int "dx"/(3 - 2"x" - "x"^2)`
3 - 2x - x2 = - x2 - 2x + 3
= -(x2 + 2x - 3)
= - (x2 + 2x + 1 - 4)
= - [(x + 1)2 - 4]
= (2)2 - (x + 1)2
∴ I = `int "dx"/((2)^2 - ("x + 1")^2)`
`= 1/(2(2)) log |(2 + "x" + 1)/(2 - ("x + 1"))|` + c
∴ I = `1/4 log |(3 + "x")/(1 - "x")|` + c
APPEARS IN
RELATED QUESTIONS
Integrate the function in e2x sin x.
Find :
`∫(log x)^2 dx`
Evaluate the following : `int x^2tan^-1x.dx`
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int e^(2x).cos 3x.dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `xsqrt(5 - 4x - x^2)`
Solve the following differential equation.
(x2 − yx2 ) dy + (y2 + xy2) dx = 0
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int sqrt(tanx) + sqrt(cotx) "d"x`
∫ log x · (log x + 2) dx = ?
`int_0^"a" sqrt("x"/("a" - "x")) "dx"` = ____________.
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
Evaluate:
`int((1 + sinx)/(1 + cosx))e^x dx`
The value of `int e^x((1 + sinx)/(1 + cosx))dx` is ______.
Evaluate:
`int1/(x^2 + 25)dx`
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x sqrt(1 + x^2) dx`