मराठी

Integrate the function in (sin-1x)2. - Mathematics

Advertisements
Advertisements

प्रश्न

Integrate the function in (sin-1x)2.

बेरीज

उत्तर

Let `I = int (sin^-1 x)^2 dx`

Put `sin^-1 x = theta`

⇒ x = sinθ 

⇒ dx = cosθ dθ

∴ `I = int theta^2 cos theta d theta`

`= theta^2 int (cos theta) d theta - int (d/ (d theta) (theta^2) * int cos theta d theta) d theta`

`= theta^2 (sin theta) - int 2 theta (sin theta) d theta`

`= theta^2 sin theta  - 2 int theta sin theta d theta + C`

`= theta^2 sin theta - 2 [theta * (- cos theta) - int 1 * (- cos theta) d theta] + C`

`= theta^2 sin theta + 2 theta cos theta - 2 int cos theta d theta  + C`

`= theta^2 sin theta + 2 theta sqrt (1 - sin^2 theta) - 2 sin theta + C`

`= x (sin^-1 x)^2 + 2sin^-1 x sqrt (1 - x^2) - 2x + C`

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 7: Integrals - Exercise 7.6 [पृष्ठ ३२७]

APPEARS IN

एनसीईआरटी Mathematics [English] Class 12
पाठ 7 Integrals
Exercise 7.6 | Q 10 | पृष्ठ ३२७

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:

(A) 0

(B) π

(C) π/2

(D) π/4


`int1/xlogxdx=...............`

(A)log(log x)+ c

(B) 1/2 (logx )2+c

(C) 2log x + c

(D) log x + c


Integrate the function in x cos-1 x.


Integrate the function in x (log x)2.


Integrate the function in `e^x (1/x - 1/x^2)`.


Integrate the function in `((x- 3)e^x)/(x - 1)^3`.


Evaluate the following : `int x^2 sin 3x  dx`


Evaluate the following : `int x^2*cos^-1 x*dx`


Evaluate the following : `int sin θ.log (cos θ).dθ`


Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`


Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`


Choose the correct options from the given alternatives :

`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =


Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`


Integrate the following w.r.t. x: `(1 + log x)^2/x`


Integrate the following w.r.t.x : log (x2 + 1)


Evaluate the following.

∫ x log x dx


Evaluate the following.

`int "x"^3 "e"^("x"^2)`dx


Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`


Evaluate: `int "dx"/("9x"^2 - 25)`


Evaluate: ∫ (log x)2 dx


`int (sin(x - "a"))/(cos (x + "b"))  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


Evaluate the following:

`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`


`int 1/sqrt(x^2 - 9) dx` = ______.


Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`


If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.


`int_0^1 x tan^-1 x  dx` = ______.


Find: `int e^(x^2) (x^5 + 2x^3)dx`.


Evaluate :

`int(4x - 6)/(x^2 - 3x + 5)^(3/2)  dx`


`int1/sqrt(x^2 - a^2) dx` = ______


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`


Evaluate `int(1 + x + (x^2)/(2!))dx`


`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.


Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`


Complete the following activity:

`int_0^2 dx/(4 + x - x^2) `

= `int_0^2 dx/(-x^2 + square + square)`

= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`

= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`

= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×