Advertisements
Advertisements
प्रश्न
Integrate the function in (sin-1x)2.
उत्तर
Let `I = int (sin^-1 x)^2 dx`
Put `sin^-1 x = theta`
⇒ x = sinθ
⇒ dx = cosθ dθ
∴ `I = int theta^2 cos theta d theta`
`= theta^2 int (cos theta) d theta - int (d/ (d theta) (theta^2) * int cos theta d theta) d theta`
`= theta^2 (sin theta) - int 2 theta (sin theta) d theta`
`= theta^2 sin theta - 2 int theta sin theta d theta + C`
`= theta^2 sin theta - 2 [theta * (- cos theta) - int 1 * (- cos theta) d theta] + C`
`= theta^2 sin theta + 2 theta cos theta - 2 int cos theta d theta + C`
`= theta^2 sin theta + 2 theta sqrt (1 - sin^2 theta) - 2 sin theta + C`
`= x (sin^-1 x)^2 + 2sin^-1 x sqrt (1 - x^2) - 2x + C`
APPEARS IN
संबंधित प्रश्न
If `int_(-pi/2)^(pi/2)sin^4x/(sin^4x+cos^4x)dx`, then the value of I is:
(A) 0
(B) π
(C) π/2
(D) π/4
`int1/xlogxdx=...............`
(A)log(log x)+ c
(B) 1/2 (logx )2+c
(C) 2log x + c
(D) log x + c
Integrate the function in x cos-1 x.
Integrate the function in x (log x)2.
Integrate the function in `e^x (1/x - 1/x^2)`.
Integrate the function in `((x- 3)e^x)/(x - 1)^3`.
Evaluate the following : `int x^2 sin 3x dx`
Evaluate the following : `int x^2*cos^-1 x*dx`
Evaluate the following : `int sin θ.log (cos θ).dθ`
Integrate the following functions w.r.t. x : `x^2 .sqrt(a^2 - x^6)`
Integrate the following functions w.r.t. x : `sqrt(x^2 + 2x + 5)`
Choose the correct options from the given alternatives :
`int cos -(3)/(7)x*sin -(11)/(7)x*dx` =
Integrate the following with respect to the respective variable : `(3 - 2sinx)/(cos^2x)`
Integrate the following w.r.t. x: `(1 + log x)^2/x`
Integrate the following w.r.t.x : log (x2 + 1)
Evaluate the following.
∫ x log x dx
Evaluate the following.
`int "x"^3 "e"^("x"^2)`dx
Evaluate: `int "dx"/(3 - 2"x" - "x"^2)`
Evaluate: `int "dx"/("9x"^2 - 25)`
Evaluate: ∫ (log x)2 dx
`int (sin(x - "a"))/(cos (x + "b")) "d"x`
`int ("e"^xlog(sin"e"^x))/(tan"e"^x) "d"x`
Evaluate the following:
`int (sin^-1 x)/((1 - x)^(3/2)) "d"x`
`int 1/sqrt(x^2 - 9) dx` = ______.
Find: `int (2x)/((x^2 + 1)(x^2 + 2)) dx`
If `π/2` < x < π, then `intxsqrt((1 + cos2x)/2)dx` = ______.
`int_0^1 x tan^-1 x dx` = ______.
Find: `int e^(x^2) (x^5 + 2x^3)dx`.
Evaluate :
`int(4x - 6)/(x^2 - 3x + 5)^(3/2) dx`
`int1/sqrt(x^2 - a^2) dx` = ______
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(3x-2)/((x+1)^2(x+3)) dx`
`int(f'(x))/sqrt(f(x)) dx = 2sqrt(f(x))+c`
Evaluate `int(1 + x + (x^2)/(2!))dx`
`int (sin^-1 sqrt(x) + cos^-1 sqrt(x))dx` = ______.
Prove that `int sqrt(x^2 - a^2)dx = x/2 sqrt(x^2 - a^2) - a^2/2 log(x + sqrt(x^2 - a^2)) + c`
Complete the following activity:
`int_0^2 dx/(4 + x - x^2) `
= `int_0^2 dx/(-x^2 + square + square)`
= `int_0^2 dx/(-x^2 + x + 1/4 - square + 4)`
= `int_0^2 dx/ ((x- 1/2)^2 - (square)^2)`
= `1/sqrt17 log((20 + 4sqrt17)/(20 - 4sqrt17))`