English

∫(x+1x)3dx = ______. - Mathematics and Statistics

Advertisements
Advertisements

Question

`int(x + 1/x)^3 dx` = ______.

Options

  • `1/4(x + 1/x)^4 + c`

  • `x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c`

  • `x^4/4 + (3x^2)/2 + 3log x + 1/x^2 + c`

  • `(x - x^(-1))^3 + c`

MCQ
Fill in the Blanks

Solution

`int(x + 1/x)^3 dx` = `bb(underline(x^4/4 + (3x^2)/2 + 3log x - 1/(2x^2) + c))`.

Explanation:

`(x + 1/x)^3 = x^3 + 3x + 3/x + 1/x^3`

∴ `int(x + 1/x)^3dx = int(x^3 + 3x + 3/x + 1/x^3)dx`

= `x^4/4 + (3x^2)/2 + 3logx - 1/(2x^2) + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 1.5: Integration - Q.1

RELATED QUESTIONS

Integrate : sec3 x w. r. t. x.


Integrate the function in x log 2x.


Integrate the function in x sec2 x.


Integrate the function in (x2 + 1) log x.


`intx^2 e^(x^3) dx` equals: 


Evaluate the following : `int log(logx)/x.dx`


Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`


Integrate the following functions w.r.t. x : `sqrt(4^x(4^x + 4))`


Integrate the following functions w.r.t. x : `e^x .(1/x - 1/x^2)`


Integrate the following functions w.r.t. x : `e^x/x [x (logx)^2 + 2 (logx)]`


Choose the correct options from the given alternatives :

`int (log (3x))/(xlog (9x))*dx` =


Integrate the following w.r.t.x : `(1)/(x^3 sqrt(x^2 - 1)`


Solve the following differential equation.

(x2 − yx2 ) dy + (y2 + xy2) dx = 0


`int ("x" + 1/"x")^3 "dx"` = ______


Choose the correct alternative from the following.

`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5  "dx"` = 


`int 1/(4x + 5x^(-11))  "d"x`


`int sin4x cos3x  "d"x`


`int ("e"^xlog(sin"e"^x))/(tan"e"^x)  "d"x`


`int (x^2 + x - 6)/((x - 2)(x - 1))  "d"x` = x + ______ + c


Evaluate `int (2x + 1)/((x + 1)(x - 2))  "d"x`


`int logx/(1 + logx)^2  "d"x`


Evaluate the following:

`int_0^1 x log(1 + 2x)  "d"x`


If u and v ore differentiable functions of x. then prove that:

`int uv  dx = u intv  dx - int [(du)/(d) intv  dx]dx`

Hence evaluate `intlog x  dx`


`int 1/sqrt(x^2 - a^2)dx` = ______.


Find `int e^x ((1 - sinx)/(1 - cosx))dx`.


Solution of the equation `xdy/dx=y log y` is ______


`int1/(x+sqrt(x))  dx` = ______


Evaluate `int(3x-2)/((x+1)^2(x+3))  dx`


Evaluate:

`int (logx)^2 dx`


Evaluate `int(1 + x + x^2/(2!))dx`.


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×