Advertisements
Advertisements
Question
Choose the correct alternative from the following.
`int (("x"^3 + 3"x"^2 + 3"x" + 1))/("x + 1")^5 "dx"` =
Options
`(-1)/"x + 1"` + c
`((-1)/"x + 1")^5` + c
log(x + 1) + c
log |x + 1|5 + c
Solution
`(-1)/"x + 1"` + c
Explanation:
= `int ("x + 1")^3/("x + 1")^5` dx
∵ (a + b)3 = a3 + 3a2b + 3ab2 + b3
(x + 1)3 = x3 + 3x2 + 3x + 1
= `1/((x + 1)^2) dx`
= `int (x + 1)^-2 . dx`
= `(x + 1)^(-2 + 1)/-2 + 1 + c`
= `(x + 1)^-1/-1 + c`
= `(-1)/(x + 1) + c`
`= (-1)/"x + 1"` + c
APPEARS IN
RELATED QUESTIONS
Integrate the function in x sec2 x.
Evaluate the following : `int x^3.tan^-1x.dx`
Evaluate the following : `int x.cos^3x.dx`
Evaluate the following : `int(sin(logx)^2)/x.log.x.dx`
Evaluate the following : `int logx/x.dx`
Integrate the following functions w.r.t. x : cosec (log x)[1 – cot (log x)]
Integrate the following with respect to the respective variable : `(sin^6θ + cos^6θ)/(sin^2θ*cos^2θ)`
Integrate the following w.r.t.x : cot–1 (1 – x + x2)
Evaluate: `int "dx"/sqrt(4"x"^2 - 5)`
Evaluate: `int e^x/sqrt(e^(2x) + 4e^x + 13)` dx
`int 1/sqrt(2x^2 - 5) "d"x`
`int ["cosec"(logx)][1 - cot(logx)] "d"x`
`int 1/(x^2 - "a"^2) "d"x` = ______ + c
Evaluate the following:
`int_0^pi x log sin x "d"x`
Find `int e^(cot^-1x) ((1 - x + x^2)/(1 + x^2))dx`.
Evaluate:
`int1/(x^2 + 25)dx`
Evaluate the following.
`intx^3e^(x^2) dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`