Advertisements
Advertisements
Question
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Solution
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x5 + `underline((-5)/3)` x3 + 5x + c
Explanation:
`"I" = int (5(x^6 + 1))/(x^2 + 1) "dx"`
`"I" = 5 int ((x^2)^3 + (1)^3)/("x"^2 + 1) "dx"`
`"I" = 5int((cancel("x"^2 + 1))("x"^4 - "x"^2 + 1))/(cancel("x"^2 + 1)) "dx" ...[a^3 + b^3 = (a + b)(a^2 - ab + b^2)]`
`"I" = 5 int ("x"^4 - "x"^2 + 1)` dx
`"I" = 5 ("x"^5/5 - "x"^3/3 + "x") + c ...[int "x"^"n" "dx" = "x"^("n" + 1)/("n" + 1)]`
`"I" = "x"^5 - 5/3"x"^3 + 5"x"` + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Solve: dy/dx = cos(x + y)
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: ∫ |x| dx if x < 0
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
`int 1/(sinx.cos^2x)dx` = ______.
`int secx/(secx - tanx)dx` equals ______.
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`