Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Solution
Let I = `int (1)/(3 + 2sin x - cosx)dx`
Put `tan(x/2)` = t
∴ x = 2 tan–1 t
∴ dx = `(2)/(1 + t^2)dt` and
sinx = `(2t)/(1 + t^2)' cosx = (1 - t^2)/(1 + t^2)`
∴ I = `int (1)/(3 + 2((2t)/(1 + t^2)) - ((1 - t^2)/(1 + t^2))).(2dt)/(1 + t^2)`
= `int (1 + t^2)/(3(1 + t^2) + 4t - (1 - t^2)).(2dt)/(1 + t^2)`
= `2 int dt/(4t^2 + 4t + 2)`
= `2 int dt/(4t^2 + 4t + 1 + 1)`
= `2 int dt/((2t + 1)^2 + 1^2)`
= `(2)/(2)tan^-1((2t + 1)/1) + c`
= `tan^-1[2tan^-1(x/2) + 1] + c`.
APPEARS IN
RELATED QUESTIONS
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following : `int (1)/(4x^2 - 3).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following integrals : `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int "e"^sqrt"x"` dx
`int 1/(xsin^2(logx)) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
`int dx/(1 + e^-x)` = ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int (logx)^2/x dx` = ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`