English

Evaluate the following : ∫sinxsin3x.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int sinx/(sin 3x).dx`

Sum

Solution

Let I = `int sinx/(sin 3x).dx`

= `int sinx/(3sinx - 4sin^3x).dx`

= `int (sinx)/(sinx(3 - 4sin^2x)).dx`

= `int (1)/(3 - 4sin^2x).dx`

Dividing both numerator and denominator by cos2x, we get

I = `int (sec^2x)/(3sec^2x - 4tan^2x).dx`

= `int (sec^2x)/(3(1 + tan^2x) - 4tan^2x).dx`

= `int (sec^2x)/(3 - tan^2x).dx`

Put tan x = t

∴ sec2x dx = dt

I = `int dt/(3-t^2)`

I = `int dt/((sqrt(3))^2 - t^2)`

= `int1/((sqrt3)^2 - t^2)dt`

= `(1)/(2sqrt(3)) log |(sqrt(3) + t)/(sqrt(3) - t)| + c`

= `(1)/(2sqrt(3)) log |(sqrt(3) + tanx)/(sqrt(3) - tanx)| + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`(1+ log x)^2/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of

\[\int\frac{a^x}{3 + a^x} \text{ dx}\]

Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


The value of \[\int\frac{1}{x + x \log x} dx\] is


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(x^2 + 2)/((x^2 + 1)).a^(x + tan^-1x)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following : `int (1)/(4 + 3cos^2x).dx`


Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int sqrt(x^2 + 2x + 5)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int sqrt(1 + sin2x)  "d"x`


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int cos^7 x  "d"x`


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int sqrt(x^2 - a^2)/x dx` = ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int (logx)^2/x dx` = ______.


`int secx/(secx - tanx)dx` equals ______.


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int(sqrt(tanx) + sqrt(cotx))dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/(x(x-1))dx`


If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int 1/(x(x-1)) dx`


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×