English

∫1+sin2x dx - Mathematics and Statistics

Advertisements
Advertisements

Question

`int sqrt(1 + sin2x)  "d"x`

Sum

Solution

`int sqrt(1 + sin2x)  "d"x = int sqrt(sin^2x + cos^2x + 2sinx cosx)  "d"x`

= `int sqrt((cosx + sinx)^2)  "d"x`

= `int (cosx + sinx)  "d"x`

= sin x – cos x + c

shaalaa.com
  Is there an error in this question or solution?
Chapter 2.3: Indefinite Integration - Very Short Answers

APPEARS IN

RELATED QUESTIONS

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`x/(sqrt(x+ 4))`, x > 0 


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x:

`(10x^9  10^x.log10)/(10^x + x^10)`


Integrate the following functions w.r.t. x:

`x^5sqrt(a^2 + x^2)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : cos7x


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int sqrt(1 + "x"^2) "dx"` =


If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int 1/(sqrt("x") + "x")` dx


`int (sin4x)/(cos 2x) "d"x`


`int logx/x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int sin^-1 x`dx = ?


`int (cos x)/(1 - sin x) "dx" =` ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int cos^3x  dx` = ______.


Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


`int dx/((x+2)(x^2 + 1))`    ...(given)

`1/(x^2 +1) dx = tan ^-1 + c`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


`int "cosec"^4x  dx` = ______.


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×