Advertisements
Advertisements
Question
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Solution
Let I = `int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Put x2 + 6x + 3 = t
∴ (2x + 6) dx = dt
∴ I = `int "dt"/sqrt"t"`
`= int "t"^((-1)/2)`dt
`= "t"^(1/2)/(1/2)` + c
`= 2 sqrt"t"` + c
∴ I = `2 sqrt("x"^2 + "6x" + 3)` + c
Alternate Method:
Let I = `int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
`"d"/"dx" ("x"^2 + "6x" + 3)` = 2x + 6
∴ I = `int ("d"/"dx" ("x"^2 + "6x" + 3))/(sqrt("x"^2 + 6"x" + 3))` dx
∴ I = `2 sqrt("x"^2 + "6x" + 3)` + c ....`[because int ("f" '("x"))/sqrt("f"("x")) "dx" = 2sqrt("f"("x")) + "c"]`
APPEARS IN
RELATED QUESTIONS
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int(5x^2-6x+3)/(2x-3) dx`