Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Solution
Let I = `int 1/(sqrt"x" + "x")` dx
= `int 1/(sqrt"x" (1 + sqrt"x"))`dx
Put `1 + sqrt"x" = "t"`
∴ `1/(2sqrt"x") "dx" = "dt"`
∴ `1/sqrt"x"`dx = 2 dt
∴ I = `int (2 * "dt")/"t"`
`= 2 int 1/"t" * "dt"`
= 2 log | t | + c
∴ I = 2 log `|1 + sqrt"x"|` + c
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
sec2(7 – 4x)
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int cot^2x "d"x`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
Evaluate `int_-a^a f(x) dx`, where f(x) = `9^x/(1 + 9^x)`.
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`