Advertisements
Advertisements
Question
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Solution
Let I = `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
`= -2 int 1/(sqrt("5x" - 4) - sqrt("5x" - 2)) xx (sqrt("5x" - 4) + sqrt("5x" - 2))/(sqrt("5x" - 4) + sqrt("5x" - 2))`dx
`= - 2 int (sqrt("5x" - 4) + sqrt("5x" - 2))/(("5x" - 4) - ("5x" - 2))` dx
`= -2 int (sqrt("5x" - 4) + sqrt("5x" - 2))/-2` dx
`= int [("5x" - 4)^(1/2) + ("5x" - 2)^(1/2)]`dx
`= int ("5x" - 4)^(1/2) "dx" + int ("5x" - 2)^(1/2)` dx
`= ("5x" - 4)^(3/2)/(3/2) xx 1/5 + ("5x" - 2)^(3/2)/(3/2) xx 1/5` + c
∴ I = `2/15 [("5x" - 4)^(3/2) + ("5x" - 2)^(3/2)]` + c
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`(1+ log x)^2/x`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Evaluate the following.
`int 1/(sqrt"x" + "x")` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
`int cot^2x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sec^6 x tan x "d"x` = ______.
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`