Advertisements
Advertisements
Question
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Solution
Consider the given integral
`I=int((2x-5)e^(2x))/((2x-3)^2)dx`
Rewriting the above integral as
`I=inte^(2x-3) xxe^3(2x-3-2)/((2x-3)^3)dx`
`=e^3inte^(2x-3)[(2x-3)/(2x-3)^3-2/(2x-3)^3]dx`
`=e^3inte^(2x-3) [1/(2x-3)^2-2/(2x-3)^3]dx`
Let us consider, 2x -3 = t
⇒ 2dx = dt
`therefore I=e^3/2inte^t[(t-2)/t^3]dt`
Let `f(t)=1/t^2`
`f'(t)=(-2)/t^3`
if I = ∫et[f(t)+f'(t)]dt then, I = etf(t) + C
`:.I=e^3/2xxe^txxf(t)+C`
`= e^3/2xxe^txx1/t^2+C`
`=e^3/2xxe^(2x-3)xx1/(2x-3)^2+C`
`=e^(2x)/(2(2x-3))+C`
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`(e^(2x) - 1)/(e^(2x) + 1)`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Integrate the following functions w.r.t. x : cos7x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int(1)/(x^2 + 4x - 5)dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int1/(x(x-1))dx`