Advertisements
Advertisements
Question
Solution
\[\text{ Let I } = \int e^x \sqrt{e^{2x} + 1} \text{ dx}\]
\[\text{ Putting}\ e^x = t\]
\[ \Rightarrow e^x dx = dt\]
\[ \therefore I = \int \sqrt{t^2 + 1}\text{ dt}\]
\[ = \frac{t}{2}\sqrt{t^2 + 1} + \frac{1^2}{2}\text{ ln } \left| t + \sqrt{t^2 + 1} \right| + C \left[ \because \int\sqrt{x^2 + a^2}\text{ dx } = \frac{1}{2}x\sqrt{x^2 + a^2} + \frac{1}{2}\text{ ln }\left| x + \sqrt{x^2 + a^2} \right| + C \right] \]
\[ = \frac{e^x}{2} \sqrt{e^{2x} + 1} + \frac{1}{2}\text{ ln }\left| e^x + \sqrt{e^{2x} + 1} \right| + C \left( \because t = e^x \right)\]
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
sec2(7 – 4x)
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following : `int (logx)2.dx`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: ∫ |x| dx if x < 0
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int cos^7 x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
Evaluate the following.
`int 1/(x^2+4x-5) dx`
`int "cosec"^4x dx` = ______.
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`