Advertisements
Advertisements
Question
Evaluate the following.
`int 1/(sqrt(3"x"^2 + 8))` dx
Solution
Let I = `int 1/(sqrt(3"x"^2 + 8))` dx
`int 1/(sqrt((sqrt3"x")^2 + (sqrt8)^2))` dx
`= (log |sqrt3"x" + sqrt((sqrt3"x")^2 + (sqrt8)^2)|)/sqrt3` + c
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c
Alternate method:
Let I = `"I" = int 1/sqrt(3"x"^2 + 8) "dx" = 1/sqrt3 int 1/(sqrt ("x"^2 + 8/3)` dx
`= 1/sqrt3 int 1/sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)` dx
`= 1/sqrt3 log |"x" + sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)| + "c"_1`
`= 1/sqrt3 log |"x" + sqrt("x"^2 + 8/3)| + "c"_1`
`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 + 8))/sqrt3| + "c"_1`
`= 1/sqrt3 log|sqrt3"x" + sqrt(3"x"^2 + 8)| - 1/sqrt3 log sqrt3 + "c"_1`
∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c
where c = `"c"_1 - 1/sqrt3 log sqrt3`
Notes
The answer in the textbook is incorrect.
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `int sinx/(1 + sinx)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int (1 + "x")/("x" + "e"^"-x")` dx
Evaluate the following.
`int "x"^5/("x"^2 + 1)`dx
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int 1/(sqrt("x") + "x")` dx
Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
`int x^2/sqrt(1 - x^6)` dx = ________________
`int x/(x + 2) "d"x`
`int cos^7 x "d"x`
`int(log(logx))/x "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
`int(log(logx) + 1/(logx)^2)dx` = ______.
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int 1/("x"("x" - 1)) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Prove that:
`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.
Evaluate:
`int 1/(1 + cosα . cosx)dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate:
`int(cos 2x)/sinx dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1+x^4))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int 1/ (x^2 + 4x - 5) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int1/(x(x - 1))dx`