English

Evaluate the following. ∫13x2+8 dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx

Sum

Solution

Let I = `int 1/(sqrt(3"x"^2 + 8))` dx

`int 1/(sqrt((sqrt3"x")^2 + (sqrt8)^2))` dx

`= (log |sqrt3"x" + sqrt((sqrt3"x")^2 + (sqrt8)^2)|)/sqrt3` + c

∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c

Alternate method:

Let I = `"I" = int 1/sqrt(3"x"^2 + 8) "dx" = 1/sqrt3 int 1/(sqrt ("x"^2 + 8/3)` dx

`= 1/sqrt3 int 1/sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)` dx

`= 1/sqrt3 log |"x" + sqrt("x"^2 + ((2sqrt2)/sqrt3)^2)| + "c"_1`

`= 1/sqrt3 log |"x" + sqrt("x"^2 + 8/3)| + "c"_1`

`= 1/sqrt3 log |(sqrt3"x" + sqrt(3"x"^2 + 8))/sqrt3| + "c"_1`

`= 1/sqrt3 log|sqrt3"x" + sqrt(3"x"^2 + 8)| - 1/sqrt3 log sqrt3 + "c"_1`

∴ I = `1/sqrt3 log |sqrt3"x" + sqrt(3"x"^2 + 8)|` + c

where c = `"c"_1 - 1/sqrt3 log sqrt3`

shaalaa.com

Notes

The answer in the textbook is incorrect.

  Is there an error in this question or solution?
Chapter 1.5: Integration - Q.4

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int \cos^4 x \text{ sin x dx }\]


Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


 Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log  |"x" +sqrt("x"^2 +"a"^2) | + "c"`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : tan5x


Integrate the following functions w.r.t. x :  tan 3x tan 2x tan x


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`


Choose the correct option from the given alternatives : 

`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int x/(4x^4 - 20x^2 - 3)dx`


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


Choose the correct alternative from the following.

`int "x"^2 (3)^("x"^3) "dx"` =


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int 1/(sqrt("x") + "x")` dx


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int x^2/sqrt(1 - x^6)` dx = ________________


`int x/(x + 2)  "d"x`


`int cos^7 x  "d"x`


`int(log(logx))/x  "d"x`


To find the value of `int ((1 + logx))/x` dx the proper substitution is ______


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int(sin2x)/(5sin^2x+3cos^2x)  dx=` ______.


If f'(x) = `x + 1/x`, then f(x) is ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


`int (sin  (5x)/2)/(sin  x/2)dx` is equal to ______. (where C is a constant of integration).


`int(log(logx) + 1/(logx)^2)dx` = ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate:

`int sqrt((a - x)/x) dx`


Evaluate:

`int sin^2(x/2)dx`


Evaluate:

`int(cos 2x)/sinx dx`


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int 1/ (x^2 + 4x - 5) dx`


Evaluate the following.

`int1/(x^2+4x-5)dx`


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int1/(x(x - 1))dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×