English

Integrate the following w.r.t. x: 2x3-5x+3x+4x5 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`

Sum

Solution

`int(2x^3 - 5x + 3/x + 4/x^5)dx`

= `2intx^3 dx - 5 int x dx + 3 int1/x dx + 4 int x^-5 dx`

= `2(x^4/4) - 5(x^2/2) + 3 log |x| + 4(x^-4/(-4)) + c`

= `x^4/(2) - (5)/(2) x^2 + 3 log |x| - (1)/x^4 + c`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.1 [Page 102]

APPEARS IN

RELATED QUESTIONS

Evaluate :`intxlogxdx`


Evaluate : `int(x-3)sqrt(x^2+3x-18)  dx`


Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`x^2/(2+ 3x^3)^3`


Integrate the functions:

`e^(tan^(-1)x)/(1+x^2)`


Integrate the functions:

tan2(2x – 3)


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`1/(1 + cot x)`


\[\int\sqrt{4 x^2 - 5}\text{ dx}\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : tan2x dx


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int tanx/(sec x + tan x)dx`


Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(2sinx cosx)/(3cos^2x + 4sin^2 x)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Choose the correct options from the given alternatives :

`int (e^x(x - 1))/x^2*dx` =


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (3"x"^2 - 5)^2` dx


Evaluate `int 1/("x" ("x" - 1))` dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx


Evaluate: `int log ("x"^2 + "x")` dx


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int (7x + 9)^13  "d"x` ______ + c


`int(5x + 2)/(3x - 4) dx` = ______


`int1/(4 + 3cos^2x)dx` = ______ 


If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


If f'(x) = `x + 1/x`, then f(x) is ______.


`int (f^'(x))/(f(x))dx` = ______ + c.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


`int 1/(sinx.cos^2x)dx` = ______.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int1/(x(x - 1))dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


Evaluate `int (1)/(x(x - 1))dx`


Evaluate `int (1+x+x^2/(2!)) dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


`int "cosec"^4x  dx` = ______.


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×