English

Integrate the following functions w.r.t. x : tanxsinx.cosx - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`

Sum

Solution

Let I = `int sqrt(tanx)/(sin x . cosx).dx`

Dividing numerator and denominator by cos2x, we get

I = `int(((sqrttanx)/(cos^2x)))/((sinx/cosx)).dx`

= `int (sqrt(tanx).sec^2x)/tanx.dx`

= `int sec^2x/sqrt(tanx).dx`

Put tan x = t
∴ sec2xdx = dt

∴ I = `int (1)/sqrt(t)dt`

= `int t^(-1/2) dt`

= `t^(1/2)/(1/2) + c`

= `2sqrt(t) + c`

= `2sqrt(tanx) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Show that:  `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sin x/(1+ cos x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate `int 1/(3+ 2 sinx + cosx) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\sqrt{x - x^2} dx\]

Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^3 x \sec^2 x \text{ dx }\].

 


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of

\[\int e^{2 x^2 + \ln x} \text{ dx}\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\text{ If } \int\left( \frac{x - 1}{x^2} \right) e^x dx = f\left( x \right) e^x + C, \text{ then  write  the value of  f}\left( x \right) .\]

\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


 Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`


Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`


Evaluate the following integrals:

`int (sin4x)/(cos2x).dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


Evaluate the following integrals : `int sqrt((9 - x)/x).dx`


Evaluate the following : `int (logx)2.dx`


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 - 5))` dx


State whether the following statement is True or False.

If `int x  "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.


Evaluate: `int log ("x"^2 + "x")` dx


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


`int sqrt(1 + sin2x)  "d"x`


`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`


`int ("e"^(2x) + "e"^(-2x))/("e"^x)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


State whether the following statement is True or False:

`int3^(2x + 3)  "d"x = (3^(2x + 3))/2 + "c"`


`int x^3"e"^(x^2) "d"x`


`int sin^-1 x`dx = ?


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


The value of `intsinx/(sinx - cosx)dx` equals ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate `int (1+x+x^2/(2!))dx`


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate:

`int 1/(1 + cosα . cosx)dx`


`int "cosec"^4x  dx` = ______.


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2 + 4x-5)dx`


If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x). 


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×