Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Solution
Let I = `int sqrt(tanx)/(sin x . cosx).dx`
Dividing numerator and denominator by cos2x, we get
I = `int(((sqrttanx)/(cos^2x)))/((sinx/cosx)).dx`
= `int (sqrt(tanx).sec^2x)/tanx.dx`
= `int sec^2x/sqrt(tanx).dx`
Put tan x = t
∴ sec2xdx = dt
∴ I = `int (1)/sqrt(t)dt`
= `int t^(-1/2) dt`
= `t^(1/2)/(1/2) + c`
= `2sqrt(t) + c`
= `2sqrt(tanx) + c`.
APPEARS IN
RELATED QUESTIONS
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Evaluate the following integrals:
`int (sin4x)/(cos2x).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(20 + 12e^x)/(3e^x + 4)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`
Evaluate the following integrals : `int sqrt((9 - x)/x).dx`
Evaluate the following : `int (logx)2.dx`
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
State whether the following statement is True or False.
If `int x "e"^(2x)` dx is equal to `"e"^(2x)` f(x) + c, where c is constant of integration, then f(x) is `(2x - 1)/2`.
Evaluate: `int log ("x"^2 + "x")` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int sqrt(1 + sin2x) "d"x`
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int x^3"e"^(x^2) "d"x`
`int sin^-1 x`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
`int "cosec"^4x dx` = ______.
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`intsqrt(sec x/2 - 1)dx`