Advertisements
Advertisements
Question
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Solution
\[\text{ Let I }= \int \frac{\sin x}{\cos^3 x}dx\]
\[\text{ Let cos x }= t\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx }= - dt\]
\[ \therefore I = - \int \frac{dt}{t^3}\]
\[ = - \int t^{- 3} dt\]
\[ = - \left[ \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2 t^2} + C\]
\[ = \frac{1}{2 \cos^2 x} + C \left( \because t = \cos x \right)\]
\[ = \frac{1}{2} \text{ sec}^2 x + C\]
APPEARS IN
RELATED QUESTIONS
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Write a value of\[\int a^x e^x \text{ dx }\]
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals: `int (2x - 7)/sqrt(4x - 1).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals : `int sqrt((e^(3x) - e^(2x))/(e^x + 1)).dx`
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate:
`int (5x^2 - 6x + 3)/(2x − 3)` dx
Evaluate `int 1/((2"x" + 3))` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
`int x^x (1 + logx) "d"x`
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
`int (7x + 9)^13 "d"x` ______ + c
`int (1 + x)/(x + "e"^(-x)) "d"x`
`int(5x + 2)/(3x - 4) dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
Find `int dx/sqrt(sin^3x cos(x - α))`.
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate:
`int 1/(1 + cosα . cosx)dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`