Advertisements
Advertisements
प्रश्न
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
उत्तर
\[\text{ Let I }= \int \frac{\sin x}{\cos^3 x}dx\]
\[\text{ Let cos x }= t\]
\[ \Rightarrow - \text{ sin x dx} = dt\]
\[ \Rightarrow \text{ sin x dx }= - dt\]
\[ \therefore I = - \int \frac{dt}{t^3}\]
\[ = - \int t^{- 3} dt\]
\[ = - \left[ \frac{t^{- 3 + 1}}{- 3 + 1} \right] + C\]
\[ = \frac{1}{2 t^2} + C\]
\[ = \frac{1}{2 \cos^2 x} + C \left( \because t = \cos x \right)\]
\[ = \frac{1}{2} \text{ sec}^2 x + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
tan2(2x – 3)
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of
Write a value of
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int tanx/(sec x + tan x)dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following with respect to the respective variable:
`x^7/(x + 1)`
Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______
`int cot^2x "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(1+x+x^2/(2!))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following:
`int x^3/(sqrt(1 + x^4)) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int1/(x(x - 1))dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`