Advertisements
Advertisements
प्रश्न
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
उत्तर
Let I = `int x/ (sqrt( x + 4)) dx`
Put x + 4 = t
⇒ dx = dt . Also, x = t - 4
∴ `I = int (t - 4)/sqrtt dt`
`= int (t^(1/2) - 4t^ (-1/2)) dt`
`= 2/3 t^(3/2) -4 xx 2t^(1/2) + C`
`= 2/3 (x + 4)^(3/2) - 8 (x + 4)^(1/2) + C`
`= 2/3 (x + 4)^(1/2) [x + 4 - 12] + C`
`= 2/3 (x + 4)^(1/2) (x - 8) + C`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(1+ log x)^2/x`
Write a value of
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
`int "dx"/(9"x"^2 + 1)= ______. `
Integrate the following w.r.t. x : x3 + x2 – x + 1
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Evaluate the following : `int (1)/(7 + 2x^2).dx`
Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate the following.
`int 1/("x" log "x")`dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(4"x"^2 - 1)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`