मराठी
महाराष्ट्र राज्य शिक्षण मंडळएचएससी विज्ञान (सामान्य) इयत्ता १२ वी

Evaluate the following : ∫11+x-x2.dx - Mathematics and Statistics

Advertisements
Advertisements

प्रश्न

Evaluate the following : `int (1)/(1 + x - x^2).dx`

बेरीज

उत्तर

Let I = `int (1)/(1 + x - x^2).dx`

∴ = `I = int1/(1 - (x^2 - x))dx`

∴ = `I = int1/(1-(x^2 - x + 1/4 - (1)/(4)))dx`

∴ = `I = int1/ ((1+1/4) - (x^2 - x + (1/2)^2))dx`

∴ = `I = int 1/ ((sqrt5/2)^2 - (x - 1/2)^2)dx`        ...[`int(1/(a^2 - x^2dx) = 1/(2a) log |(a + x)/(a - x)|+c)`]

∴ `I = (1)/(2(sqrt(5)/2))log|(sqrt(5)/(2) + (x - 1/2))/(sqrt(5)/(2) - (x - 1/2))| + c`

∴ `I = (1)/sqrt(5) log |(sqrt(5) - 1 + 2x)/(sqrt(5) + 1 - 2x)|+ c`.

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 3: Indefinite Integration - Exercise 3.2 (B) [पृष्ठ १२३]

APPEARS IN

बालभारती Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
पाठ 3 Indefinite Integration
Exercise 3.2 (B) | Q 1.11 | पृष्ठ १२३

व्हिडिओ ट्यूटोरियलVIEW ALL [2]

संबंधित प्रश्‍न

Find : `int((2x-5)e^(2x))/(2x-3)^3dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

sin (ax + b) cos (ax + b)


Integrate the functions:

`(x^3 - 1)^(1/3) x^5`


Integrate the functions:

`x/(e^(x^2))`


Integrate the functions:

`(2cosx - 3sinx)/(6cos x + 4 sin x)`


Integrate the functions:

`1/(1 + cot x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{3 + 2x - x^2} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


\[\int x \sin^3 x\ dx\]

Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (sin2x)/(cosx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : sin4x.cos3x


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `cosx/sin(x - a)`


Integrate the following functions w.r.t. x : `sin(x - a)/cos(x  + b)`


Integrate the following functions w.r.t. x : sin5x.cos8x


Evaluate the following : `int (1)/(4x^2 - 3).dx`


Evaluate the following:

`int (1)/(25 - 9x^2)*dx`


Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`


Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals:

`int (2x + 1)/(x^2 + 4x - 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Choose the correct options from the given alternatives :

`int sqrt(cotx)/(sinx*cosx)*dx` =


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

`int "x" sqrt(1 + "x"^2)` dx


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate `int "x - 1"/sqrt("x + 4")` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


Evaluate `int(3x^2 - 5)^2  "d"x`


`int (1 + x)/(x + "e"^(-x))  "d"x`


`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.


If `int(cosx - sinx)/sqrt(8 - sin2x)dx = asin^-1((sinx + cosx)/b) + c`. where c is a constant of integration, then the ordered pair (a, b) is equal to ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate the following.

`int x sqrt(1 + x^2)  dx`


Prove that:

`int 1/sqrt(x^2 - a^2) dx = log |x + sqrt(x^2 - a^2)| + c`.


`int x^3 e^(x^2) dx`


`int "cosec"^4x  dx` = ______.


`int 1/(sin^2x cos^2x)dx` = ______.


The value of `int ("d"x)/(sqrt(1 - x))` is ______.


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int(5x^2-6x+3)/(2x-3)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×