Advertisements
Advertisements
प्रश्न
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
उत्तर
`int (1)/(4x^2 - 20x + 17).dx`
= `(1)/(4) int (1)/(x^2 - 5x + 17/4).dx`
= `(1)/(4) int (1)/((x^2 - 5x + 25/4) - (25)/(4) + (17)/(4)).dx`
= `(1)/(4) int (1)/((x - 5/2)^2 - (sqrt(2))^2).dx`
= `(1)/(4) xx (1)/(2sqrt(2))log|(x - 5/2 - sqrt(2))/(x - 5/2 + sqrt(2))| + c`
= `(1)/(8sqrt(2))log |(2x - 5 - 2sqrt(2))/(2x - 5 + 2sqrt(2))| + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos sqrt(x)/sqrtx`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Integrate the functions:
`1/(1 - tan x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Solve: dy/dx = cos(x + y)
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{1 + 2 e^x} \text{ dx }\].
Write a value of
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (sin2x)/(cosx)dx`
Evaluate the following integrals : `int sin 4x cos 3x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Integrate the following functions w.r.t. x : sin5x.cos8x
Evaluate the following : `int sqrt((2 + x)/(2 - x)).dx`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Evaluate the following : `int (1)/sqrt(3x^2 + 5x + 7).dx`
Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals : `int (3cosx)/(4sin^2x + 4sinx - 1).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int (e^(2x) + e^-2x)/e^x*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate `int "x - 1"/sqrt("x + 4")` dx
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int ("d"x)/(x(x^4 + 1))` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
`int x/sqrt(1 - 2x^4) dx` = ______.
(where c is a constant of integration)
`int secx/(secx - tanx)dx` equals ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
`int (cos4x)/(sin2x + cos2x)dx` = ______.
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3 – 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).