Advertisements
Advertisements
प्रश्न
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
उत्तर
Let I = `int 1/(7 + 6"x" - "x"^2)` dx
`= int 1/(7 + 9 - 9 + 6"x" - "x"^2)` dx
`= int 1/(16 - ("x"^2 - 6"x" + 9))` dx
`= int 1/((4)^2 - ("x" - 3)^2)` dx
`= 1/(2xx4) log |(4 + "x" - 3)/(4 - ("x" - 3))|` + c
∴ I = `1/8 log |(1 + "x")/(7 - "x")|` + c
संबंधित प्रश्न
Evaluate : `int (sinx)/sqrt(36-cos^2x)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate `int 1/((2"x" + 3))` dx
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int (f^'(x))/(f(x))dx` = ______ + c.
The value of `intsinx/(sinx - cosx)dx` equals ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int1/(x(x - 1))dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int 1/(x(x-1))dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`