Advertisements
Advertisements
प्रश्न
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
उत्तर
`int (3 sec^2 x - 4/x + 1/(xsqrt(x)) - 7)dx`
= `3int sec^2x dx - 4 int 1/x dx + intx ^(-(3)/(2)) dx - 7 int 1 dx`
= `3 tan x - 4 log |x| + (x ^(- 3/2 + 1))/(-3/2 + 1) - 7x + c`
= `3 tan x - 4 log |x| + (x ^(- 1/2 ))/(-1/2) - 7x + c`
= `3 tan x - 4 log |x| + (-2x^(-1/2)) - 7x + c`
= `3tan x - 4 log |x| - 2/sqrt(x) - 7x + c`
APPEARS IN
संबंधित प्रश्न
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Integrate the functions:
sin x ⋅ sin (cos x)
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
`x^2/(2+ 3x^3)^3`
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Integrate the functions:
`cos x /(sqrt(1+sinx))`
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals : `int cos^2x.dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/(cos2x + 3sin^2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following integrals:
`int (7x + 3)/sqrt(3 + 2x - x^2).dx`
Choose the correct option from the given alternatives :
`int (1 + x + sqrt(x + x^2))/(sqrt(x) + sqrt(1 + x))*dx` =
Choose the correct options from the given alternatives :
`int dx/(cosxsqrt(sin^2x - cos^2x))*dx` =
Evaluate `int (3"x"^2 - 5)^2` dx
Evaluate the following.
`int "x" sqrt(1 + "x"^2)` dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx
`int x^2/sqrt(1 - x^6)` dx = ________________
`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________
`int "e"^x[((x + 3))/((x + 4)^2)] "d"x`
`int (cos2x)/(sin^2x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following
`int1/(x^2 +4x-5)dx`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate:
`int sqrt((a - x)/x) dx`
Evaluate `int 1/(x(x-1))dx`
`int 1/(sin^2x cos^2x)dx` = ______.
Evaluate:
`int sin^3x cos^3x dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`