Advertisements
Advertisements
प्रश्न
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
उत्तर
\[\int\left( \frac{x^3 - 1}{x^2} \right) dx\]
\[ = \int\left( \frac{x^3}{x^2} - \frac{1}{x^2} \right)dx\]
\[ = \int\left( x - x^{- 2} \right)dx\]
\[ = \frac{x^2}{2} - \frac{x^{- 2 + 1}}{- 2 + 1} + C\]
\[ = \frac{x^2}{2} + \frac{1}{x} + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`1/(x-sqrtx)`
Evaluate: `int 1/(x(x-1)) dx`
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
`int "dx"/(9"x"^2 + 1)= ______. `
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`3 sec^2x - 4/x + 1/(xsqrt(x)) - 7`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sqrt(3)sinx).dx`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Evaluate `int "x - 1"/sqrt("x + 4")` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
`int sqrt(x^2 + 2x + 5)` dx = ______________
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int sin^-1 x`dx = ?
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
`int sqrt(x^2 - a^2)/x dx` = ______.
`int (logx)^2/x dx` = ______.
Find `int dx/sqrt(sin^3x cos(x - α))`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`