Advertisements
Advertisements
प्रश्न
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
उत्तर
`int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
= `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)) xx (sqrt(7x - 2) + sqrt(7x - 5))/(sqrt(7x - 2) + sqrt(7x - 5)).dx`
= `int (3(sqrt(7x - 2) + sqrt(7x - 5)))/((7x - 2) - (7x - 5)).dx`
= `int (sqrt(7x - 2) + sqrt(7x - 5)).dx`
= `int(7x - 2)^(1/2) .dx + int(7x - 5)^(1/2).dx`
= `((7x - 2)^(3/2))/(3/2) xx (1)/(7) + ((7x - 5)^(3/2))/(3/2) xx (1)/(7) + c`
= `(2)/(21)(7x - 2)^(3/2) + (2)/(21)(7x - 5)^(3/2) + c`.
APPEARS IN
संबंधित प्रश्न
Evaluate :
`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`
Integrate the functions:
`xsqrt(x + 2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`
Write a value of
Write a value of\[\int \log_e x\ dx\].
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
The value of \[\int\frac{1}{x + x \log x} dx\] is
Prove that: `int "dx"/(sqrt("x"^2 +"a"^2)) = log |"x" +sqrt("x"^2 +"a"^2) | + "c"`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x:
`(10x^9 10^x.log10)/(10^x + x^10)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : tan5x
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `(1)/(4x^2 - 20x + 17)`
Evaluate the following : `int sinx/(sin 3x).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`
Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`
Evaluate `int 1/("x" ("x" - 1))` dx
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int ("e"^"x" + "e"^(- "x"))^2 ("e"^"x" - "e"^(-"x"))`dx
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
`int x^2/sqrt(1 - x^6)` dx = ________________
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int 1/(xsin^2(logx)) "d"x`
`int cot^2x "d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int (f^'(x))/(f(x))dx` = ______ + c.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1+ x + x^2/(2!)) dx`
Evaluate the following.
`int 1/(x^2+4x-5) dx`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1 + x + x^2/(2!))dx`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int x^3 e^(x^2) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2 -6x + 3)/(2x -3)dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following.
`int1/(x^2 + 4x - 5) dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int (5x^2 - 6x + 3)/(2x - 3) dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).