Advertisements
Advertisements
प्रश्न
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
पर्याय
log x – log (1 – x) + c
log (1 - x2) + c
- log x + log(1 - x) + c
log (x - x2) + c
उत्तर
log x – log (1 – x) + c
Explanation:
Let I = `int "dx"/(("x" - "x"^2))`
`= int 1/("x"(1 - "x"))` dx
`= int ((1 - "x")+"x")/("x"(1 - "x"))` dx
`= int (1/"x" + 1/"1 - x")` dx
`= log |"x"| + (log |1 - "x"|)/-1` + c
= log |x| - log |1 - x| + c
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
`int (dx)/(sin^2 x cos^2 x)` equals:
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Integrate the following w.r.t. x : `(3x^3 - 2x + 5)/(xsqrt(x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
`int logx/(log ex)^2*dx` = ______.
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate `int(1+x+(x^2)/(2!))dx`
Evaluate the following.
`int x^3/sqrt(1+x^4) dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`