Advertisements
Advertisements
प्रश्न
Integrate the functions:
(4x + 2) `sqrt(x^2 + x +1)`
उत्तर
Let `I = int (4x + 2) sqrt(x^2 + x + 1)` dx
or `I = 2 int (2x + 1) sqrt ((x^2 + x + 1))` dx
Taking x2 + x + 1 = t
2x + 1 = dt
Hence, `I = 2 int sqrt t dt`
`= 2 int t^(1/2) dt = 2. 2/3 t^(3/2) + C`
`= 4/3 (x^2 + x + 1)^(3/2) + C`
APPEARS IN
संबंधित प्रश्न
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`x/(e^(x^2))`
Integrate the functions:
`sin x/(1+ cos x)`
Integrate the functions:
`1/(1 - tan x)`
Write a value of
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Evaluate the following : `int (1)/(x^2 + 8x + 12).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following.
`int 1/(x(x^6 + 1))` dx
Choose the correct alternative from the following.
`int "x"^2 (3)^("x"^3) "dx"` =
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: `int "e"^sqrt"x"` dx
`int (log x)/(log ex)^2` dx = _________
`int sqrt(1 + sin2x) "d"x`
`int (2 + cot x - "cosec"^2x) "e"^x "d"x`
General solution of `(x + y)^2 ("d"y)/("d"x) = "a"^2, "a" ≠ 0` is ______. (c is arbitrary constant)
`int ("d"x)/(x(x^4 + 1))` = ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.
If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.
Evaluate the following.
`int x^3/(sqrt(1+x^4))dx`
if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`
Evaluate `int (1+x+x^2/(2!)) dx`
`int x^2/sqrt(1 - x^6)dx` = ______.
Evaluate `int1/(x(x-1))dx`
If f '(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate `int(1+x+x^2/(2!))dx`