Advertisements
Advertisements
प्रश्न
Write a value of
उत्तर
\[\text{ Let I }= \int\frac{1 + \cot x}{x + \text{ log sin x}}dx\]
\[\text{ Let x } + \log \sin x = t\]
\[ \Rightarrow \left( 1 + \frac{1}{\sin x} \times \cos x \right) dx = dt\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C\]
\[ = \text{ log } \left| x + \log \sin x \right| + C\]
APPEARS IN
संबंधित प्रश्न
Integrate the functions:
cot x log sin x
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`
Evaluate the following integrals : `int sin x/cos^2x dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.
Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Evaluate the following : `int sinx/(sin 3x).dx`
Choose the correct options from the given alternatives :
`int f x^x (1 + log x)*dx`
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Evaluate `int (5"x" + 1)^(4/9)` dx
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: ∫ |x| dx if x < 0
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int(7x - 2)^2dx = (7x -2)^3/21 + c`
The value of `sqrt(2) int (sinx dx)/(sin(x - π/4))` is ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
`int x^3 e^(x^2) dx`
Evaluate the following
`int x^3/sqrt(1+x^4) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int1/(x^2+4x-5) dx`
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1)) dx`
Evaluate the following.
`int1/(x^2 + 4x - 5)dx`