मराठी

Write a Value of ∫ 1 + Cot X X + Log Sin X D X - Mathematics

Advertisements
Advertisements

प्रश्न

Write a value of

\[\int\frac{1 + \cot x}{x + \log \sin x} \text{ dx }\]
बेरीज

उत्तर

\[\text{ Let I }= \int\frac{1 + \cot x}{x + \text{ log  sin x}}dx\]
\[\text{ Let x } + \log \sin x = t\]
\[ \Rightarrow \left( 1 + \frac{1}{\sin x} \times \cos x \right) dx = dt\]
\[ \Rightarrow \left( 1 + \cot x \right)dx = dt\]
\[ \therefore I = \int\frac{dt}{t}\]
\[ = \text{ log }\left| t \right| + C\]
\[ = \text{ log } \left| x + \log \sin x \right| + C\]

shaalaa.com
  या प्रश्नात किंवा उत्तरात काही त्रुटी आहे का?
पाठ 19: Indefinite Integrals - Very Short Answers [पृष्ठ १९७]

APPEARS IN

आरडी शर्मा Mathematics [English] Class 12
पाठ 19 Indefinite Integrals
Very Short Answers | Q 1 | पृष्ठ १९७

संबंधित प्रश्‍न

Integrate the functions:

cot x log sin x


Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]


Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals:

`int x/(x + 2).dx`


Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`


Evaluate the following : `int sinx/(sin 3x).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: ∫ |x| dx if x < 0


`int x^2/sqrt(1 - x^6)` dx = ________________


`int sqrt(1 + sin2x)  "d"x`


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int[ tan (log x) + sec^2 (log x)] dx= ` ______


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


`int x^3 e^(x^2) dx`


Evaluate the following

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate `int1/(x(x-1))dx`


Evaluate `int 1/(x(x-1)) dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×