Advertisements
Advertisements
प्रश्न
Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1
उत्तर
Let I = e3logx(x4 + 1)–1.dx
= `int e^(logx^3)/(x^4 + 1).dx`
= `int x^3/(x^4 + 1).dx` ...[∵ elogN = N]
= `(1)/(4) int(4x^3)/(x^4 + 1).dx`
= `(1)/(4) int(d/dx(x^4 + 1))/(x^4 + 1).dx`
= `(1)/(4)log|x^4 + 1| + c. ...[∵ int (f'(x))/f(x) dx = log|f(x)| + c]`
APPEARS IN
संबंधित प्रश्न
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `intsqrtx/sqrt(a^3-x^3)dx`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
sin (ax + b) cos (ax + b)
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`1/(x-sqrtx)`
Integrate the functions:
`(x^3 - 1)^(1/3) x^5`
Integrate the functions:
`x/(9 - 4x^2)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
`(sin^(-1) x)/(sqrt(1-x^2))`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
`1/(1 - tan x)`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Evaluate: `int (sec x)/(1 + cosec x) dx`
Write a value of
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x}{\cos^3 x} \text{ dx }\]
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t.x:
`(2sinx cosx)/(3cos^2x + 4sin^2 x)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`
Evaluate the following:
`int (1)/(25 - 9x^2)*dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
Evaluate `int 1/("x" ("x" - 1))` dx
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
If f '(x) = `"x"^2/2 - "kx" + 1`, f(0) = 2 and f(3) = 5, find f(x).
Evaluate the following.
∫ (x + 1)(x + 2)7 (x + 3)dx
Evaluate the following.
`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx
Evaluate the following.
`int (2"e"^"x" + 5)/(2"e"^"x" + 1)`dx
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int "x"^3/(16"x"^8 - 25)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
Evaluate the following.
`int 1/(sqrt(3"x"^2 - 5))` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Fill in the Blank.
`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int 2/(sqrtx - sqrt(x + 3))` dx = ________________
`int x^3"e"^(x^2) "d"x`
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
`int(sin2x)/(5sin^2x+3cos^2x) dx=` ______.
If f'(x) = `x + 1/x`, then f(x) is ______.
`int (sin (5x)/2)/(sin x/2)dx` is equal to ______. (where C is a constant of integration).
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
`int cos^3x dx` = ______.
`int (logx)^2/x dx` = ______.
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4)dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`
Evaluate the following.
`intx^3/sqrt(1 + x^4) dx`