English

Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : e3logx(x4 + 1)–1 

Sum

Solution

Let I = e3logx(x4 + 1)–1.dx

= `int e^(logx^3)/(x^4 + 1).dx`

= `int x^3/(x^4 + 1).dx`                         ...[∵ elogN = N]

= `(1)/(4) int(4x^3)/(x^4 + 1).dx`

= `(1)/(4) int(d/dx(x^4 + 1))/(x^4 + 1).dx`

= `(1)/(4)log|x^4 + 1| + c.    ...[∵ int (f'(x))/f(x) dx = log|f(x)| + c]`

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`


Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate :   `∫1/(cos^4x+sin^4x)dx`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`(e^(2x) - 1)/(e^(2x) + 1)`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

`((x+1)(x + logx)^2)/x`


Integrate the functions:

`(x^3 sin(tan^(-1) x^4))/(1 + x^8)`


Solve: dy/dx = cos(x + y)


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{9 - x^2}\text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

 Write a valoue of \[\int \sin^3 x \cos x\ dx\]

 


Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int e^{ax} \cos\ bx\ dx\].

 


Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


\[\int\frac{\cos^5 x}{\sin x} \text{ dx }\]

Evaluate : `int ("e"^"x" (1 + "x"))/("cos"^2("x""e"^"x"))"dx"`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Integrate the following functions w.r.t. x : `(logx)^n/x`


Integrate the following functions w.r.t. x : `(3e^(2x) + 5)/(4e^(2x) - 5)`


Integrate the following functions w.r.t. x : cos7x


Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`


Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Choose the correct options from the given alternatives :

`int f x^x (1 + log x)*dx`


Evaluate the following.

`int (3"e"^"x" + 4)/(2"e"^"x" - 8)`dx


Evaluate the following.

`int 1/("x"^2 + 4"x" - 5)` dx


Evaluate the following.

`int "x"^3/(16"x"^8 - 25)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


State whether the following statement is True or False.

The proper substitution for `int x(x^x)^x (2log x + 1)  "d"x` is `(x^x)^x` = t


Evaluate `int (5"x" + 1)^(4/9)` dx


Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).


Evaluate: `int "e"^sqrt"x"` dx


Evaluate: `int sqrt("x"^2 + 2"x" + 5)` dx


`int 1/(cos x - sin x)` dx = _______________


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int (log x)/(log ex)^2` dx = _________


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int x^x (1 + logx)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


Choose the correct alternative:

`int(1 - x)^(-2) dx` = ______.


`int sec^6 x tan x   "d"x` = ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


Find `int dx/sqrt(sin^3x cos(x - α))`.


Evaluate `int(1+ x + x^2/(2!)) dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int(1 + x + x^2/(2!))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate:

`int sqrt((a - x)/x) dx`


`int "cosec"^4x  dx` = ______.


Evaluate `int 1/(x(x-1))dx`


`int 1/(sin^2x cos^2x)dx` = ______.


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate the following.

`int (x^3)/(sqrt(1 + x^4)) dx`


Evaluate the following:

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following:

`int x^3/(sqrt(1 + x^4)) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×