Advertisements
Advertisements
Question
Write a value of\[\int e^{ax} \sin\ bx\ dx\]
Solution
\[\text{ Let I }= \int e^{ax} . \sin bx\ dx\]
\[ = \sin bx\int e^{ax}\text{ dx }- \int\left\{ \frac{d}{dx}\left( \sin bx \right)\int e^{ax} dx \right\}dx\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \int\cos bx \times b . \frac{e^{ax}}{a}\]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a}\int e^{ax} . \cos bx\ dx \]
\[ = \sin bx \times \frac{e^{ax}}{a} - \frac{b}{a} I_1 . . . \left( 1 \right)\]
\[ \therefore I_1 = \int e^{ax} \times \cos bxdx\]
\[ = \cos bx\int e^{ax} dx - \int\left\{ \frac{d}{dx}\left( \cos bx \right)\int e^{ax} dx \right\}dx\]
\[ = \cos bx \times \frac{e^{ax}}{a} + \int b . \sin bx \times \frac{e^{ax}}{a}dx\]
\[ = \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I . . . . \left( 2 \right)\]
\[\text{ From }\left( 1 \right) \text{ and}\ \left( 2 \right)\]
\[ \therefore I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a} \left\{ \cos bx . \frac{e^{ax}}{a} + \frac{b}{a}I \right\}\]
\[ \Rightarrow I = \sin bx . \frac{e^{ax}}{a} - \frac{b}{a^2} \cos bx \text{ e}^{ax} - \frac{b^2}{a^2}I\]
\[ \Rightarrow I + \frac{b^2}{a^2}I = \sin bx . \frac{e^{ax}}{a} - \frac{b \cos bx \text{ e}^{ax}}{a^2}\]
\[ \Rightarrow \left( a^2 + b^2 \right)I = \left( a \sin bx - b\cos bx \right) e^{ax} \]
\[ \Rightarrow I = \frac{\left( a \sin bx - b\cos bx \right) e^{ax}}{a^2 + b^2} + C\]
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`x/(sqrt(x+ 4))`, x > 0
Integrate the functions:
sec2(7 – 4x)
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int(4x + 3)/(2x + 1).dx`
Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`
Integrate the following functions w.r.t. x : `(logx)^n/x`
Integrate the following functions w.r.t. x : `((sin^-1 x)^(3/2))/(sqrt(1 - x^2)`
Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x:
`x^5sqrt(a^2 + x^2)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
`int logx/(log ex)^2*dx` = ______.
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c
`int cos sqrtx` dx = _____________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
`int (f^'(x))/(f(x))dx` = ______ + c.
`int(log(logx) + 1/(logx)^2)dx` = ______.
Write `int cotx dx`.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate the following.
`int x^3 e^(x^2) dx`
Evaluate the following.
`int (x^3)/(sqrt(1 + x^4)) dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).