Advertisements
Advertisements
Question
Write a value of\[\int\frac{1}{x \left( \log x \right)^n} \text { dx }\].
Solution
\[ = \int \frac{\left( \log x \right)^{- n} dx}{x}\]
\[\text{ Let log x } = t\]
\[ \Rightarrow \frac{1}{x}dx = dt\]
\[ \therefore I = \int t^{- n} . dt\]
\[ = \frac{t^{- n + 1}}{- n + 1} + C\]
\[ = \frac{\left( \log x \right)^{- n + 1}}{- n + 1} + C \left( \because t = \log x \right)\]
APPEARS IN
RELATED QUESTIONS
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Integrate the functions:
`e^(2x+3)`
Integrate the functions:
`(e^(2x) - e^(-2x))/(e^(2x) + e^(-2x))`
Integrate the functions:
sec2(7 – 4x)
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : `int(x - 2)/sqrt(x + 5).dx`
Integrate the following functions w.r.t.x:
`(5 - 3x)(2 - 3x)^(-1/2)`
Integrate the following functions w.r.t. x : `x^2/sqrt(9 - x^6)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`
Evaluate the following.
`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx
State whether the following statement is True or False.
If ∫ x f(x) dx = `("f"("x"))/2`, then find f(x) = `"e"^("x"^2)`
`int 1/(cos x - sin x)` dx = _______________
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(x^2 + 2x + 5)` dx = ______________
`int sqrt(x) sec(x)^(3/2) tan(x)^(3/2)"d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
`int (x^2 + 1)/(x^4 - x^2 + 1)`dx = ?
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int sec^6 x tan x "d"x` = ______.
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
If `int x^3"e"^(x^2) "d"x = "e"^(x^2)/2 "f"(x) + "c"`, then f(x) = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate the following.
`int x^3/(sqrt(1 + x^4))dx`
Solve the following Evaluate.
`int(5x^2 - 6x + 3)/(2x - 3)dx`
`int "cosec"^4x dx` = ______.
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate the following.
`int1/(x^2+4x-5)dx`
Evaluate `int 1/(x(x-1))dx`