Advertisements
Advertisements
Question
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Solution
Let I = `int 1/sqrt((x - 3)(x + 2)).dx`
= `int 1/sqrt(x^2 - x - 6).dx`
= `int 1/sqrt((x^2 - x + 1/4) - 1/4 - 6).dx`
= `int 1/sqrt((x - 1/2)^2 - (5/2)^2).dx`
= `log|(x - 1/2) + sqrt((x - 1/2)^2 - (5/2)^2)| + c`
= `log|(x - 1/2) + sqrt(x^2 - x - 6)| + c`.
APPEARS IN
RELATED QUESTIONS
Find : `int((2x-5)e^(2x))/(2x-3)^3dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`1/(x + x log x)`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Integrate the functions:
`(2cosx - 3sinx)/(6cos x + 4 sin x)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Integrate the functions:
cot x log sin x
Integrate the functions:
`sin x/(1+ cos x)`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Evaluate `int 1/(3+ 2 sinx + cosx) dx`
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin x + \cos x}{\sqrt{1 + \sin 2x}} dx\]
Write a value of
Write a value of
Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .
The value of \[\int\frac{1}{x + x \log x} dx\] is
Find : ` int (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)
Integrate the following functions w.r.t. x : `e^(3x)/(e^(3x) + 1)`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Integrate the following functions w.r.t.x:
cos8xcotx
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int sqrt((10 + x)/(10 - x)).dx`
Evaluate the following : `int sinx/(sin 3x).dx`
Evaluate the following integrals:
`int (2x + 1)/(x^2 + 4x - 5).dx`
Evaluate the following : `int (logx)2.dx`
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate `int (3"x"^3 - 2sqrt"x")/"x"` dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
Evaluate the following.
`int ("2x" + 6)/(sqrt("x"^2 + 6"x" + 3))` dx
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Evaluate: `int "e"^sqrt"x"` dx
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int ("e"^(3x))/("e"^(3x) + 1) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
State whether the following statement is True or False:
`int3^(2x + 3) "d"x = (3^(2x + 3))/2 + "c"`
State whether the following statement is True or False:
`int sqrt(1 + x^2) *x "d"x = 1/3(1 + x^2)^(3/2) + "c"`
Evaluate `int(3x^2 - 5)^2 "d"x`
`int x^3"e"^(x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int1/(4 + 3cos^2x)dx` = ______
`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`
If I = `int (sin2x)/(3x + 4cosx)^3 "d"x`, then I is equal to ______.
`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.
`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.
`int(log(logx) + 1/(logx)^2)dx` = ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int dx/(2 + cos x)` = ______.
(where C is a constant of integration)
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluated the following
`int x^3/ sqrt (1 + x^4 )dx`
Evaluate the following.
`int(20 - 12"e"^"x")/(3"e"^"x" - 4) "dx"`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate `int (1+x+x^2/(2!)) dx`
Evaluate:
`int(sqrt(tanx) + sqrt(cotx))dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate:
`int(cos 2x)/sinx dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate the following.
`int1/(x^2+4x-5)dx`
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).