Advertisements
Advertisements
Question
Evaluate: If f '(x) = `sqrt"x"` and f(1) = 2, then find the value of f(x).
Solution
f '(x) = `sqrt"x"` ....[Given]
f(x) = ∫ f '(x)
`= int sqrt"x"` dx
`= int "x"^(1/2)` dx
`= "x"^(3/2)/(3/2)` + c
∴ f(x) = `2/3 "x"^(3/2) + "c"` ...(i)
Now, f(1) = 2 ....[Given]
∴ `2/3 (1)^(3/2) + "c" = 2`
∴ c = `2 - 2/3`
∴ c = `4/3`
∴ f(x) = `2/3 "x"^(3/2) + 4/3`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Integrate the functions:
`sqrt(tanx)/(sinxcos x)`
Evaluate: `int 1/(x(x-1)) dx`
Solve: dy/dx = cos(x + y)
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`
Evaluate the following integrals : tan2x dx
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Choose the correct options from the given alternatives :
`int (cos2x - 1)/(cos2x + 1)*dx` =
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Evaluate: `int "e"^"x" (1 + "x")/(2 + "x")^2` dx
`int logx/x "d"x`
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int(1 + x + x^2 / (2!))dx`
Evaluate `int1/(x(x - 1))dx`