English

Choose the correct options from the given alternatives : ∫cos2x-1cos2x+1⋅dx = - Mathematics and Statistics

Advertisements
Advertisements

Question

Choose the correct options from the given alternatives :

`int (cos2x - 1)/(cos2x + 1)*dx` =

Options

  • tan x – x + c

  • x + tan x + c

  • x – tan x + c

  • – x – cot x + c

MCQ

Solution

x – tan x + c

[ Hint : `int (cos2x - 1)/(cos2x + 1)*dx`

= `int (-(1 - cos2x))/(1 + cos^2x)*dx`

= `int (-2sin^2x)/(2cos^2x)*dx`

= `int (sec^2x - 1)*dx`

= – tan x + x + c.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 1.19 | Page 150

RELATED QUESTIONS

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Evaluate: `int sqrt(tanx)/(sinxcosx) dx`


Integrate the functions:

`e^(2x+3)`


Integrate the functions:

`sin x/(1+ cos x)`


Integrate the functions:

`(1+ log x)^2/x`


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int (sec x)/(1 + cosec x) dx`


Write a value of

\[\int x^2 \sin x^3 \text{ dx }\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\sqrt{x^2 - 9} \text{ dx}\]


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Find : ` int  (sin 2x ) /((sin^2 x + 1) ( sin^2 x + 3 ) ) dx`


Integrate the following w.r.t. x:

`2x^3 - 5x + 3/x + 4/x^5`


Evaluate the following integrals : `int sin x/cos^2x dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`


Evaluate the following integrals : `int cos^2x.dx`


Integrate the following functions w.r.t. x : `(x.sec^2(x^2))/sqrt(tan^3(x^2)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following function w.r.t. x:

x9.sec2(x10)


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(1)/(sinx.cosx + 2cos^2x)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Integrate the following w.r.t.x : `(3x + 1)/sqrt(-2x^2 + x + 3)`


Evaluate `int (3"x"^2 - 5)^2` dx


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int 1/(x(x^6 + 1))` dx 


Evaluate the following.

`int 1/(4"x"^2 - 20"x" + 17)` dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Evaluate the following.

`int 1/(sqrt("x"^2 + 4"x"+ 29))` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Fill in the Blank.

`int (5("x"^6 + 1))/("x"^2 + 1)` dx = x4 + ______ x3 + 5x + c


`int (x^2 + x - 6)/((x - 2)(x - 1))dx = x` + ______ + c


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


`int (2(cos^2 x - sin^2 x))/(cos^2 x + sin^2 x)` dx = ______________


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int x^x (1 + logx)  "d"x`


`int 1/(xsin^2(logx))  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


`int x^3"e"^(x^2) "d"x`


`int sec^6 x tan x   "d"x` = ______.


The integral `int ((1 - 1/sqrt(3))(cosx - sinx))/((1 + 2/sqrt(3) sin2x))dx` is equal to ______.


The value of `sqrt(2) int (sinx  dx)/(sin(x - π/4))` is ______.


`int (logx)^2/x dx` = ______.


Evaluate the following.

`int x^3/(sqrt(1+x^4))dx`


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


Evaluate `int 1/("x"("x" - 1)) "dx"`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate `int1/(x(x - 1))dx`


Solve the following Evaluate.

`int(5x^2 - 6x + 3)/(2x - 3)dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate:

`int(cos 2x)/sinx dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate `int(1+x+(x^2)/(2!))dx`


Evaluate the following:

`int (1) / (x^2 + 4x - 5) dx`


Evaluate:

`int(5x^2-6x+3)/(2x-3)dx`


Evaluate the following

`int x^3 e^(x^2) ` dx


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×