Advertisements
Advertisements
Question
Choose the correct alternative from the following.
`int "dx"/(("x" - "x"^2))`=
Options
log x – log (1 – x) + c
log (1 - x2) + c
- log x + log(1 - x) + c
log (x - x2) + c
Solution
log x – log (1 – x) + c
Explanation:
Let I = `int "dx"/(("x" - "x"^2))`
`= int 1/("x"(1 - "x"))` dx
`= int ((1 - "x")+"x")/("x"(1 - "x"))` dx
`= int (1/"x" + 1/"1 - x")` dx
`= log |"x"| + (log |1 - "x"|)/-1` + c
= log |x| - log |1 - x| + c
APPEARS IN
RELATED QUESTIONS
Integrate the functions:
`1/(cos^2 x(1-tan x)^2`
Write a value of
Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]
Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].
Evaluate the following integrals : `int sin 4x cos 3x dx`
Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`
Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`
Integrate the following functions w.r.t. x : `int (1)/(cosx - sinx).dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate `int 1/((2"x" + 3))` dx
Evaluate: `int "x" * "e"^"2x"` dx
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
`int sin^-1 x`dx = ?
`int "dx"/((sin x + cos x)(2 cos x + sin x))` = ?
`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
`int x^3 e^(x^2) dx`
Evaluate.
`int (5x^2-6x+3)/(2x-3)dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.