Advertisements
Advertisements
Question
`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?
Options
`1/3`
`1/2`
`1/4`
2
Solution
`1/4`
Explanation:
Let x + 2 = p `"d"/"dx" (2"x"^2 + 6"x" + 5) + "q"`
= p(4x + 6) + q
∴ x + 2 = 4px + 6p + q
∴ 4p = 1 and 6p + q = 2
∴ p = `1/4`
APPEARS IN
RELATED QUESTIONS
Evaluate :
`int(sqrt(cotx)+sqrt(tanx))dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate: `int (2y^2)/(y^2 + 4)dx`
Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int(5x + 2)/(3x - 4).dx`
Evaluate the following integrals:
`int(2)/(sqrt(x) - sqrt(x + 3)).dx`
Evaluate the following : `int (1)/(1 + x - x^2).dx`
Evaluate the following.
`int "x"^3/sqrt(1 + "x"^4)` dx
Evaluate the following.
`int 1/(7 + 6"x" - "x"^2)` dx
`int sqrt(1 + "x"^2) "dx"` =
Evaluate: `int sqrt(x^2 - 8x + 7)` dx
`int (sin4x)/(cos 2x) "d"x`
`int (cos2x)/(sin^2x) "d"x`
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.