Advertisements
Advertisements
Question
Evaluate `int 1/((2"x" + 3))` dx
Solution
Let I = `int 1/(2"x" + 3)` dx
∴ I = `(log |"2x" + 3|)/2` + c
APPEARS IN
RELATED QUESTIONS
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
Evaluate : `∫1/(3+2sinx+cosx)dx`
Write a value of
Write a value of
Write a value of\[\int\frac{\left( \tan^{- 1} x \right)^3}{1 + x^2} dx\]
Write a value of\[\int\frac{\sin 2x}{a^2 \sin^2 x + b^2 \cos^2 x} \text{ dx }\]
\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`
Integrate the following functions w.r.t. x : `int (1)/(3 + 2sin x - cosx)dx`
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
State whether the following statement is True or False.
The proper substitution for `int x(x^x)^x (2log x + 1) "d"x` is `(x^x)^x` = t
Evaluate: `int 1/(sqrt("x") + "x")` dx
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
Evaluate.
`int(5"x"^2 - 6"x" + 3)/(2"x" - 3) "dx"`
Evaluate the following.
`int1/(x^2+4x-5)dx`