Advertisements
Advertisements
Question
Integrate the following functions w.r.t. x : `(sinx + 2cosx)/(3sinx + 4cosx)`
Solution
Let I = `int (sinx + 2cosx)/(3sinx + 4cosx).dx`
Put,
Numberator = `"A (Denominator) + B"[d/dx("Denominator")]`
∴ sinx + 2cosx = `"A"(3sinx + 4cosx) + "B"[d/dx(3sinx + 4cosx)]`
= A(3 sin x + 4 cos x) + B(3 cos x – 4 sin x)
∴ sin x + 2 cos x = (3A – 4B)sin x + (4A + 3B)cos x
Equaliting the coefficients of sin x and cos x on both the sides, we get
3A – 4B = 1 ...(1)
and
4A + 3B = 2 ...(2)
Multiplying equation (1) by 3 and equation (2) by 4, we get
9A – 12B = 3
16A + 12B = 8
On adding, we get
25A = 11
∴ A = `(11)/(25)`
∴ from (2), `4(11/25) + 3"B"` = 2
∴ 3B = `2 - (44)/(25) = (6)/(25)`
∴ B = `(2)/(25)`
∴ `sinx + 2cos x = (11)/(25)(3sinx + 4cosx) + (2)/(25)(3cosx - 4sinx)`
∴ I = `int[(11/25(3sinx + 4cosx) + 2/25(3cosx - 4sinx))/(3sinx + 4cosx)].dx`
= `int[11/25 + (2/25(3cosx - 4sinx))/((3sinx + 4cosx))].dx`
= `(11)/(25) int1 dx + 2/25 int(3cosx - 4sin x)/(3sin x + 4cosx).dx`
= `(11)/(25)x + (2)/(25)log|3 sin x + 4 cos x| + c. ...[∵ int (f'(x))/(f'(x))dx = log|f(x)| + c]`
APPEARS IN
RELATED QUESTIONS
Evaluate : `int_0^pi(x)/(a^2cos^2x+b^2sin^2x)dx`
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Evaluate : `∫1/(cos^4x+sin^4x)dx`
Integrate the functions:
`(log x)^2/x`
Integrate the functions:
`sqrt(ax + b)`
Integrate the functions:
`xsqrt(1+ 2x^2)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
`int (dx)/(sin^2 x cos^2 x)` equals:
Write a value of
Write a value of
Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]
Write a value of\[\int e^{ax} \left\{ a f\left( x \right) + f'\left( x \right) \right\} dx\] .
Show that : `int _0^(pi/4) "log" (1+"tan""x")"dx" = pi /8 "log"2`
Integrate the following w.r.t. x:
`2x^3 - 5x + 3/x + 4/x^5`
Evaluate the following integrals : `intsqrt(1 - cos 2x)dx`
Evaluate the following integrals:
`int x/(x + 2).dx`
Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`
Evaluate the following integrals : `int cos^2x.dx`
Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`
Integrate the following functions w.r.t. x : `e^x.log (sin e^x)/tan(e^x)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `cosx/sin(x - a)`
Integrate the following functions w.r.t. x : `(1)/(2 + 3tanx)`
Integrate the following functions w.r.t. x : `3^(cos^2x) sin 2x`
Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`
Evaluate the following : `int (1)/sqrt(3x^2 - 8).dx`
Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Evaluate the following:
`int (1)/sqrt((x - 3)(x + 2)).dx`
Integrate the following functions w.r.t. x : `int (1)/(4 - 5cosx).dx`
Choose the correct options from the given alternatives :
`int sqrt(cotx)/(sinx*cosx)*dx` =
Choose the correct options from the given alternatives :
`int (e^x(x - 1))/x^2*dx` =
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).
If f'(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`int 1/("x"^2 + 4"x" - 5)` dx
Evaluate the following.
`int x/(4x^4 - 20x^2 - 3)dx`
Evaluate the following.
`int 1/(sqrt("x"^2 -8"x" - 20))` dx
If f '(x) = `1/"x" + "x"` and f(1) = `5/2`, then f(x) = log x + `"x"^2/2` + ______
Fill in the Blank.
`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______
Evaluate: `int 1/(sqrt("x") + "x")` dx
`int 1/(cos x - sin x)` dx = _______________
`int cos sqrtx` dx = _____________
`int ("e"^x(x - 1))/(x^2) "d"x` = ______
`int 1/(xsin^2(logx)) "d"x`
`int (7x + 9)^13 "d"x` ______ + c
Evaluate `int(3x^2 - 5)^2 "d"x`
Evaluate `int"e"^x (1/x - 1/x^2) "d"x`
`int dx/(1 + e^-x)` = ______
`int ("d"x)/(x(x^4 + 1))` = ______.
The general solution of the differential equation `(1 + y/x) + ("d"y)/(d"x)` = 0 is ______.
`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.
The value of `intsinx/(sinx - cosx)dx` equals ______.
The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.
`int (x + sinx)/(1 + cosx)dx` is equal to ______.
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate the following.
`int 1/(x^2 + 4x - 5) dx`
If f'(x) = 4x3- 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).
Evaluate the following.
`intxsqrt(1+x^2)dx`
Evaluate `int(1+x+x^2/(2!))dx`
Evaluate `int1/(x(x-1))dx`
Evaluate the following
`int x^3 e^(x^2) ` dx
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate `int 1/(x(x-1))dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate the following.
`int1/(x^2 + 4x-5)dx`