English

Integrate the following functions w.r.t. x : 1x+x3 - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`

Sum

Solution

Let I = `int(1)/(sqrt(x) + sqrt(x^3)).dx`

= `int(1)/(x^(1/2)+ x^(3/2)).dx`

Put x = t2
∴ dx = 2t dt

Also `x^(1/2) = (t^2)^(1/2)` = t
and
`x^(3/2) = (t^2)^(3/2)` = t3 

∴ I = `int (2tdt)/(t + t^3)`

= `2int "tdt"/(t(1 + t^2)`

= `2int (1)/(1 + t^2)dt`

= 2tan–1 t+ c
= `2tan^-1(sqrt(x)) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (A) [Page 110]

APPEARS IN

RELATED QUESTIONS

Evaluate :

`∫(x+2)/sqrt(x^2+5x+6)dx`


Integrate the functions:

`(log x)^2/x`


Integrate the functions:

`1/(x-sqrtx)`


Integrate the functions:

`x/(9 - 4x^2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`sqrt(sin 2x) cos 2x`


Integrate the functions:

cot x log sin x


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


`int (dx)/(sin^2 x cos^2 x)` equals:


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


Evaluate: `int (sec x)/(1 + cosec x) dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\sqrt{16 x^2 + 25} \text{ dx}\]

\[\int\sqrt{2 x^2 + 3x + 4} \text{ dx}\]

Write a value of

\[\int \tan^6 x \sec^2 x \text{ dx }\] .

Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]


Write a value of\[\int\frac{\sec^2 x}{\left( 5 + \tan x \right)^4} dx\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\left( e^{x \log_e \text{  a}} + e^{a \log_e x} \right) dx\] .


Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^x \left( \frac{1}{x} - \frac{1}{x^2} \right) dx\] .


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


Integrate the following w.r.t. x : `int x^2(1 - 2/x)^2 dx`


Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`


Evaluate the following integrals : `int (3)/(sqrt(7x - 2) - sqrt(7x - 5)).dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(1)/(4x + 5x^-11)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t.x:

cos8xcotx


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`


Evaluate the following : `int sqrt((9 + x)/(9 - x)).dx`


Evaluate the following : `int (1)/sqrt(x^2 + 8x - 20).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 - 2cos 2x).dx`


Evaluate the following integrals : `int (2x + 3)/(2x^2 + 3x - 1).dx`


If f'(x) = x2 + 5 and f(0) = −1, then find the value of f(x).


Evaluate the following.

`int (1 + "x")/("x" + "e"^"-x")` dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("x" log "x")`dx


Evaluate the following.

`int 1/(4"x"^2 - 1)` dx


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate:

`int (5x^2 - 6x + 3)/(2x − 3)` dx


Evaluate: ∫ |x| dx if x < 0


Evaluate: `int "x" * "e"^"2x"` dx


Evaluate: `int sqrt(x^2 - 8x + 7)` dx


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int (sin4x)/(cos 2x) "d"x`


`int ("e"^(3x))/("e"^(3x) + 1)  "d"x`


`int cot^2x  "d"x`


`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1))  "d"x`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


Evaluate  `int"e"^x (1/x - 1/x^2)  "d"x`


If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______ 


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


If f'(x) = `x + 1/x`, then f(x) is ______.


`int(3x + 1)/(2x^2 - 2x + 3)dx` equals ______.


If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.


`int 1/(sinx.cos^2x)dx` = ______.


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Evaluate `int(1 + x + x^2/(2!) )dx`


Evaluate the following.

`int 1/(x^2 + 4x - 5)  dx`


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate.

`int (5x^2 -6x + 3)/(2x -3)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)  dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate `int 1/(x(x-1)) dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×