English

Evaluate the following : ∫111-4x2.dx - Mathematics and Statistics

Advertisements
Advertisements

Question

Evaluate the following : `int (1)/sqrt(11 - 4x^2).dx`

Sum

Solution

`int (1)/sqrt(11 - 4x^2).dx`

= `int (1)/sqrt((sqrt(11))^2 - (2x)^2).dx`

= `(1)/(2) sin^-1 (2x/sqrt(11)) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Exercise 3.2 (B) [Page 123]

APPEARS IN

RELATED QUESTIONS

Find `int((3sintheta-2)costheta)/(5-cos^2theta-4sin theta)d theta`


Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.


 
 

Evaluate :

`int1/(sin^4x+sin^2xcos^2x+cos^4x)dx`

 
 

Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(x + 2)`


Integrate the functions:

`(e^(2x) -  e^(-2x))/(e^(2x) + e^(-2x))`


Integrate the functions:

`1/(cos^2 x(1-tan x)^2`


Integrate the functions:

`1/(1 - tan x)`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Integrate the functions:

`(1+ log x)^2/x`


`(10x^9 + 10^x log_e 10)/(x^10 + 10^x)  dx` equals:


Evaluate : `∫1/(3+2sinx+cosx)dx`


Evaluate: `int 1/(x(x-1)) dx`


Evaluate: `int (2y^2)/(y^2 + 4)dx`


\[\int\sqrt{x^2 + x + 1} \text{ dx}\]

\[\int\cos x \sqrt{4 - \sin^2 x}\text{ dx}\]

\[\int e^x \sqrt{e^{2x} + 1} \text{ dx}\]

Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{1}{1 + e^x} \text{ dx }\]


Write a value of\[\int a^x e^x \text{ dx }\]


Write a value of\[\int\frac{\sin x - \cos x}{\sqrt{1 + \sin 2x}} \text{ dx}\]


Write a value of\[\int\sqrt{9 + x^2} \text{ dx }\].


Write a value of \[\int\frac{1 - \sin x}{\cos^2 x} \text{ dx }\]


Evaluate:  \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]


\[\int\frac{\sin x + 2 \cos x}{2 \sin x + \cos x} \text{ dx }\]


`int "dx"/(9"x"^2 + 1)= ______. `


Evaluate the following integrals : `intsqrt(1 + sin 5x).dx`


Integrate the following functions w.r.t. x : `((x - 1)^2)/(x^2 + 1)^2`


Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`


Integrate the following functions w.r.t. x : `(1)/(x.logx.log(logx)`.


Integrate the following functions w.r.t. x : `(cos3x - cos4x)/(sin3x + sin4x)`


Integrate the following functions w.r.t. x : `(4e^x - 25)/(2e^x - 5)`


Integrate the following functions w.r.t. x : `(sin6x)/(sin 10x sin 4x)`


Integrate the following functions w.r.t. x : `(sinx cos^3x)/(1 + cos^2x)`


Evaluate the following : `int (1)/sqrt(2x^2 - 5).dx`


Evaluate the following : `int (1)/(1 + x - x^2).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(2 + cosx - sinx).dx`


Integrate the following functions w.r.t. x : `int (1)/(3 + 2 sin2x + 4cos 2x).dx`


Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`


Evaluate `int (-2)/(sqrt("5x" - 4) - sqrt("5x" - 2))`dx


Evaluate the following.

∫ (x + 1)(x + 2)7 (x + 3)dx


Evaluate the following.

`int 1/("a"^2 - "b"^2 "x"^2)` dx


Choose the correct alternative from the following.

The value of `int "dx"/sqrt"1 - x"` is


Choose the correct alternative from the following.

`int "dx"/(("x" - "x"^2))`= 


Evaluate `int 1/((2"x" + 3))` dx


Evaluate: `int 1/(2"x" + 3"x" log"x")` dx


`int 1/(cos x - sin x)` dx = _______________


`int (log x)/(log ex)^2` dx = _________


`int cot^2x  "d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


`int sin^-1 x`dx = ?


`int dx/(1 + e^-x)` = ______


`int sec^6 x tan x   "d"x` = ______.


`int_1^3 ("d"x)/(x(1 + logx)^2)` = ______.


`int(7x - 2)^2dx = (7x -2)^3/21 + c`


The value of `int (sinx + cosx)/sqrt(1 - sin2x) dx` is equal to ______.


`int (x + sinx)/(1 + cosx)dx` is equal to ______.


`int x/sqrt(1 - 2x^4) dx` = ______.

(where c is a constant of integration)


Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.


Find : `int sqrt(x/(1 - x^3))dx; x ∈ (0, 1)`.


if `f(x) = 4x^3 - 3x^2 + 2x +k, f (0) = - 1 and f (1) = 4, "find " f(x)`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following

`int1/(x^2 +4x-5)dx`


Evaluate.

`int(5"x"^2 - 6"x" + 3)/(2"x" - 3)  "dx"`


Evaluate the following.

`int x^3/(sqrt(1 + x^4))dx`


Evaluate.

`int (5x^2 - 6x + 3)/(2x - 3) dx`


Evaluate `int (1+x+x^2/(2!)) dx`


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate.

`int (5x^2-6x+3)/(2x-3)dx`


Evaluate:

`int sin^3x cos^3x  dx`


Evaluate `int1/(x(x-1))dx` 


Evaluate `int (1 + "x" + "x"^2/(2!))`dx


Evaluate `int 1/(x(x-1))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×