English

Integrate the following with respect to the respective variable : (x-2)2x - Mathematics and Statistics

Advertisements
Advertisements

Question

Integrate the following with respect to the respective variable : `(x - 2)^2sqrt(x)`

Sum

Solution

Let I = `int (x - 2)^2 sqrt(x)*dx`

= `int (x^2 - 4x + 4)sqrt(x)*dx`

= `int (x^(5/2) - 4x^(3/2) + 4x^(1/2))*dx`

= `int x^(5/2)*dx - 4 int x^(3/2)*dx + 4 int x^(1/2)*dx`

= `x^(7/2)/((7/2)) - 4 x^(5/2)/((5/2)) + 4 x^(3/2)/((3/2))`

= `(2)/(7)x^(7/2) - 8/5x^(5/2) + (8)/(3)x^(3/2) + c`.

shaalaa.com
  Is there an error in this question or solution?
Chapter 3: Indefinite Integration - Miscellaneous Exercise 3 [Page 150]

APPEARS IN

Balbharati Mathematics and Statistics 2 (Arts and Science) [English] 12 Standard HSC Maharashtra State Board
Chapter 3 Indefinite Integration
Miscellaneous Exercise 3 | Q 2.1 | Page 150

RELATED QUESTIONS

Find `intsqrtx/sqrt(a^3-x^3)dx`


Integrate the functions:

sin x ⋅ sin (cos x)


Integrate the functions:

`xsqrt(1+ 2x^2)`


Integrate the functions:

`(sin^(-1) x)/(sqrt(1-x^2))`


Integrate the functions:

`(sin x)/(1+ cos x)^2`


Integrate the functions:

`sqrt(tanx)/(sinxcos x)`


Evaluate: `int_0^3 f(x)dx` where f(x) = `{(cos 2x, 0<= x <= pi/2),(3, pi/2 <= x <= 3) :}`


\[\int\sqrt{1 + x - 2 x^2} \text{ dx }\]

Write a value of

\[\int e^x \left( \sin x + \cos x \right) \text{ dx}\]

 


Write a value of

\[\int\frac{\cos x}{3 + 2 \sin x}\text{  dx}\]

Write a value of\[\int\frac{\cos x}{\sin x \log \sin x} dx\]

 


Write a value of\[\int e^{ax} \sin\ bx\ dx\]


Write a value of\[\int\sqrt{4 - x^2} \text{ dx }\]


\[If \int e^x \left( \tan x + 1 \right)\text{ sec  x  dx } = e^x f\left( x \right) + C, \text{ then  write  the value  of  f}\left( x \right) .\]

 

 


The value of \[\int\frac{\cos \sqrt{x}}{\sqrt{x}} dx\] is


Evaluate the following integrals : `int sinx/(1 + sinx)dx`


If `f'(x) = x - (3)/x^3, f(1) = (11)/(2)`, find f(x)


Integrate the following functions w.r.t. x : `(1 + x)/(x.sin (x + log x)`


Integrate the following functions w.r.t. x : `(e^(2x) + 1)/(e^(2x) - 1)`


Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`


Integrate the following functions w.r.t.x:

`(5 - 3x)(2 - 3x)^(-1/2)`


Integrate the following functions w.r.t. x : `(7 + 4 + 5x^2)/(2x + 3)^(3/2)`


Evaluate the following : `int (1)/(5 - 4x - 3x^2).dx`


Evaluate the following integrals : `int (3x + 4)/(x^2 + 6x + 5).dx`


Evaluate the following integrals :  `int (3x + 4)/sqrt(2x^2 + 2x + 1).dx`


Evaluate the following integrals : `int sqrt((x - 7)/(x - 9)).dx`


If f'(x) = 4x3 − 3x2  + 2x + k, f(0) = 1 and f(1) = 4, find f(x).


Evaluate the following.

`int "x"^5/("x"^2 + 1)`dx


Evaluate the following.

`int 1/(sqrt"x" + "x")` dx


Evaluate the following.

`int ((3"e")^"2t" + 5)/(4"e"^"2t" - 5)`dt


Evaluate the following.

`int (20 - 12"e"^"x")/(3"e"^"x" - 4)`dx


Evaluate the following.

`int 1/(sqrt(3"x"^2 + 8))` dx


Evaluate the following.

`int 1/(sqrt("x"^2 -8"x" - 20))` dx


`int sqrt(1 + "x"^2) "dx"` =


`int ("x + 2")/(2"x"^2 + 6"x" + 5)"dx" = "p" int (4"x" + 6)/(2"x"^2 + 6"x" + 5) "dx" + 1/2 int "dx"/(2"x"^2 + 6"x" + 5)`, then p = ?


Fill in the Blank.

`int 1/"x"^3 [log "x"^"x"]^2 "dx" = "P" (log "x")^3` + c, then P = _______


Evaluate: `int (2"e"^"x" - 3)/(4"e"^"x" + 1)` dx


`int 1/sqrt((x - 3)(x + 2))` dx = ______.


`int x^2/sqrt(1 - x^6)` dx = ________________


`int e^x/x [x (log x)^2 + 2 log x]` dx = ______________


If `int 1/(x + x^5)` dx = f(x) + c, then `int x^4/(x + x^5)`dx = ______


`int  ("e"^x(x - 1))/(x^2)  "d"x` = ______ 


`int (2 + cot x - "cosec"^2x) "e"^x  "d"x`


`int sqrt(x)  sec(x)^(3/2) tan(x)^(3/2)"d"x`


State whether the following statement is True or False:

If `int x  "f"(x) "d"x = ("f"(x))/2`, then f(x) = `"e"^(x^2)`


State whether the following statement is True or False:

`int"e"^(4x - 7)  "d"x = ("e"^(4x - 7))/(-7) + "c"`


If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.


`int1/(4 + 3cos^2x)dx` = ______ 


`int "e"^(sin^-1 x) ((x + sqrt(1 - x^2))/(sqrt1 - x^2)) "dx" = ?`


`int ((x + 1)(x + log x))^4/(3x) "dx" =`______.


`int sec^6 x tan x   "d"x` = ______.


`int ("d"x)/(sinx cosx + 2cos^2x)` = ______.


`int 1/(a^2 - x^2) dx = 1/(2a) xx` ______.


`int(log(logx) + 1/(logx)^2)dx` = ______.


If `int [log(log x) + 1/(logx)^2]dx` = x [f(x) – g(x)] + C, then ______.


`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`


`int secx/(secx - tanx)dx` equals ______.


Evaluated the following

`int x^3/ sqrt (1 + x^4 )dx`


If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)


Evaluate the following.

`int 1/(x^2+4x-5)  dx`


If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)


Evaluate the following.

`int(1)/(x^2 + 4x - 5)dx`


Evaluate the following.

`int1/(x^2+4x-5) dx`


Evaluate the following.

`int x^3 e^(x^2) dx`


Evaluate:

`intsqrt(3 + 4x - 4x^2)  dx`


Evaluate the following.

`intxsqrt(1+x^2)dx`


Evaluate the following.

`int x^3/sqrt(1+x^4) dx`


Evaluate `int (1 + x + x^2/(2!)) dx`


Evaluate `int(1+x+x^2/(2!))dx`


Evaluate the following.

`intx^3/sqrt(1+x^4)dx`


Evaluate `int(5x^2-6x+3)/(2x-3) dx`


Evaluate the following.

`intx^3/sqrt(1 + x^4)dx`


Evaluate the following.

`int1/(x^2 + 4x - 5)dx`


Evaluate:

`intsqrt(sec  x/2 - 1)dx`


Share
Notifications

Englishहिंदीमराठी


      Forgot password?
Use app×