Advertisements
Advertisements
Question
Evaluate:
`intsqrt(sec x/2 - 1)dx`
Solution
I = `intsqrt(sec x/2 - 1)dx`
= `intsqrt((1 - cos x/2)/(cos x/2)) dx`
= `intsqrt(((1 - cos x/2)(1 + cos x/2))/(cos x/2(1 + cos x/2)))dx`
= `int(sin x/2)/sqrt(cos^2 x/2 + cos x/2)dx`
Let `cos x/2 = t`
`\implies -sin x/2*1/2dx = dt`
`\implies sin x/2*dx = -2dt`
∴ I = `-2int dt/(sqrt(t^2 + t)`
= `-2int dt/sqrt((t + 1/2)^2 - (1/2)^2`
= `-2log_e|(t + 1/2) + sqrt(t^2 + t)| + c`
= `-2log_e|(cos x/2 + 1/2) + sqrt(cos^2 x/2 + cos x/2)| + c`
APPEARS IN
RELATED QUESTIONS
Prove that `int_a^bf(x)dx=f(a+b-x)dx.` Hence evaluate : `int_a^bf(x)/(f(x)+f(a-b-x))dx`
Integrate the functions:
`e^(tan^(-1)x)/(1+x^2)`
Solve: dy/dx = cos(x + y)
Integrate the following functions w.r.t. x : `(x^n - 1)/sqrt(1 + 4x^n)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate the following : `int (1)/sqrt(8 - 3x + 2x^2).dx`
Integrate the following functions w.r.t. x : `int (1)/(2sin 2x - 3)dx`
`int logx/(log ex)^2*dx` = ______.
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
`int x^2/sqrt(1 - x^6)` dx = ________________
`int sqrt(1 + sin2x) "d"x`
`int ("e"^(2x) + "e"^(-2x))/("e"^x) "d"x`
`int x^x (1 + logx) "d"x`
`int sqrt(("e"^(3x) - "e"^(2x))/("e"^x + 1)) "d"x`
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int dx/(1 + e^-x)` = ______
If `tan^-1x = 2tan^-1((1 - x)/(1 + x))`, then the value of x is ______
Evaluate `int_(logsqrt(2))^(logsqrt(3)) 1/((e^x + e^-x)(e^x - e^-x)) dx`.
Evaluate `int(1 + x + x^2/(2!) )dx`
Evaluate `int (1+x+x^2/(2!))dx`
Evaluate the following.
`int x sqrt(1 + x^2) dx`
Evaluate.
`int (5x^2 - 6x + 3)/(2x - 3) dx`
If f ′(x) = 4x3 − 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x)
`int "cosec"^4x dx` = ______.
Evaluate:
`int sin^2(x/2)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
If f'(x) = 4x3 - 3x2 + 2x + k, f(0) = 1 and f(1) = 4, find f(x).