Advertisements
Advertisements
प्रश्न
Evaluate:
`intsqrt(sec x/2 - 1)dx`
उत्तर
I = `intsqrt(sec x/2 - 1)dx`
= `intsqrt((1 - cos x/2)/(cos x/2)) dx`
= `intsqrt(((1 - cos x/2)(1 + cos x/2))/(cos x/2(1 + cos x/2)))dx`
= `int(sin x/2)/sqrt(cos^2 x/2 + cos x/2)dx`
Let `cos x/2 = t`
`\implies -sin x/2*1/2dx = dt`
`\implies sin x/2*dx = -2dt`
∴ I = `-2int dt/(sqrt(t^2 + t)`
= `-2int dt/sqrt((t + 1/2)^2 - (1/2)^2`
= `-2log_e|(t + 1/2) + sqrt(t^2 + t)| + c`
= `-2log_e|(cos x/2 + 1/2) + sqrt(cos^2 x/2 + cos x/2)| + c`
APPEARS IN
संबंधित प्रश्न
Show that: `int1/(x^2sqrt(a^2+x^2))dx=-1/a^2(sqrt(a^2+x^2)/x)+c`
Find the particular solution of the differential equation x2dy = (2xy + y2) dx, given that y = 1 when x = 1.
Evaluate :
`∫(x+2)/sqrt(x^2+5x+6)dx`
Integrate the functions:
`(sin x)/(1+ cos x)^2`
`(10x^9 + 10^x log_e 10)/(x^10 + 10^x) dx` equals:
Write a value of
Write a value of
Write a value of\[\int \cos^4 x \text{ sin x dx }\]
Evaluate: \[\int\frac{x^3 - 1}{x^2} \text{ dx}\]
Integrate the following functions w.r.t. x : `sqrt(tanx)/(sinx.cosx)`
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(1)/(x(x^3 - 1)`
Integrate the following functions w.r.t. x : tan 3x tan 2x tan x
Evaluate `int (1 + "x" + "x"^2/(2!))`dx
Evaluate the following.
`int 1/("a"^2 - "b"^2 "x"^2)` dx
Choose the correct alternative from the following.
The value of `int "dx"/sqrt"1 - x"` is
Evaluate: `int "e"^sqrt"x"` dx
Choose the correct alternative:
`int(1 - x)^(-2) dx` = ______.
To find the value of `int ((1 + logx))/x` dx the proper substitution is ______
State whether the following statement is True or False:
`int"e"^(4x - 7) "d"x = ("e"^(4x - 7))/(-7) + "c"`
`int dx/(1 + e^-x)` = ______
`int ("e"^x(x + 1))/(sin^2(x"e"^x)) "d"x` = ______.
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
Find `int (x + 2)/sqrt(x^2 - 4x - 5) dx`.
`int secx/(secx - tanx)dx` equals ______.
`int x^3 e^(x^2) dx`
Evaluate:
`int sin^3x cos^3x dx`
Evaluate:
`int(5x^2-6x+3)/(2x-3)dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`