Advertisements
Advertisements
प्रश्न
`int(1 - x)^(-2)` dx = `(1 - x)^(-1) + c`
विकल्प
True
False
उत्तर
This statement is True.
Explanation:
`int(1-x)^-2.dx`
= `(1-x)^(-2+1)/((-2+1)xx(-1))+"c"`
= `(1-x)^-1/((-1)(-1))+"c"`
= `(1 - x)^-1 + "c"`
APPEARS IN
संबंधित प्रश्न
Evaluate : `int(x-3)sqrt(x^2+3x-18) dx`
Find : `int(x+3)sqrt(3-4x-x^2dx)`
Integrate the functions:
`sqrt(sin 2x) cos 2x`
Evaluate `int (x-1)/(sqrt(x^2 - x)) dx`
Write a value of\[\int\text{ tan x }\sec^3 x\ dx\]
Write a value of\[\int a^x e^x \text{ dx }\]
Write a value of
The value of \[\int\frac{1}{x + x \log x} dx\] is
Evaluate the following integrals : `int (cos2x)/(sin^2x.cos^2x)dx`
Evaluate the following integrals : `int sqrt(1 + sin 2x) dx`
Integrate the following functions w.r.t. x : sin4x.cos3x
Integrate the following functions w.r.t. x : `(1)/(sqrt(x) + sqrt(x^3)`
Integrate the following functions w.r.t. x : `(2x + 1)sqrt(x + 2)`
Integrate the following functions w.r.t. x : `sin(x - a)/cos(x + b)`
Choose the correct options from the given alternatives :
`2 int (cos^2x - sin^2x)/(cos^2x + sin^2x)*dx` =
`int 1/sqrt((x - 3)(x + 2))` dx = ______.
If f(x) = 3x + 6, g(x) = 4x + k and fog (x) = gof (x) then k = ______.
`int1/(4 + 3cos^2x)dx` = ______
`int[ tan (log x) + sec^2 (log x)] dx= ` ______
If `int sinx/(sin^3x + cos^3x)dx = α log_e |1 + tan x| + β log_e |1 - tan x + tan^2x| + γ tan^-1 ((2tanx - 1)/sqrt(3)) + C`, when C is constant of integration, then the value of 18(α + β + γ2) is ______.
If f′(x) = 4x3 − 3x2 + 2x + k, f(0) = -1 and f(1) = 4, find f(x)
Evaluate:
`int sin^3x cos^3x dx`
The value of `int ("d"x)/(sqrt(1 - x))` is ______.
Evaluate the following:
`int (1) / (x^2 + 4x - 5) dx`
Evaluate `int 1/(x(x-1))dx`
Evaluate the following.
`intx^3/sqrt(1+x^4)dx`
Evaluate `int (1 + x + x^2/(2!)) dx`